£35062

DATA STRUCTURES AND ADVANCED PROGRAMMING
20: Left-Leaning Red-Black Trees

o \ Alexandra Papoutsak
@& ' shelher/hers

TODAY'S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

» Introduction

» Elementary red-black BST operations
» Insertion

» Mathematical analysis

» Historical context

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION 3

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

» Start with standard BSTs which are made up of 2-nodes.

» Add extra information to encode 3-nodes. We will introduce two types
of links.

» Red links: bind together two 2-nodes to represent a 3-node.

» Specifically, 3-nodes are represented as two 2-nodes connected by
a single red link that leans left (one of the 2-nodes is the left child of
the other).

» Black links: bind together the 2-3 tree.

» Advantage: Can use BST code with minimal modification.

INTRODUCTION

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

red-black BST

horizontal red links

2-3 tree

1-1 correspondence between red-black BSTs and 2-3 trees

3-node

less between\ / greater
than a aandb than b

(b)
(a)
greater

less between than b

than a aandb

INTRODUCTION
Definition

» Aleft-leaning red-black tree is a BST such that:

» No node has two red links connected to it.
» Red links lean left.

» Every path from root to leaves has the same number of
black links (perfect black balance).

red-black BST)

,"j /\ !)\‘ﬁ\'
:/'E‘/ -xlE\l 7 ‘-)‘l/- X
/'C‘“/\ -1\"‘\) -) -\ '/§ ‘
A il

INTRODUCTION

Search

» Exactly the same as for elementary BSTs (we ignore the color).

» But runs faster because of better balance.

public Value get(Key key) {
if (key == null) throw new IllegalArgumentException("argument to get() is null");
return get(root, key);

}

// value associated with the given key in subtree rooted at x; null if no such key
private Value get(Node x, Key key) {
while (x != null) {
int cmp = key.compareTo(x.key);

if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;

}

return null;

}
» Operations such as floor, iteration, rank, selection are also

identical.

INTRODUCTION 7

Representation

» Each node is pointed to by one node, its parent. We can use this to
encode the color of the links in nodes.

» True if the link from the parent is red and false if it is black. Null links
are black.

private static final boolean RED = true;
private static final boolean BLACK = false;

private Node root; // root of the BST

// BST helper node data type h

private class Node { h.left.color » .
private Value val; // associated data N o 5 BLACK
private Node left, right; // links to left and right subtrees
private boolean color; // color of parent link
private int size; // subtree count

private boolean isRed(Node x) {
if (x == null) return false;
return x.color == RED;

}

INTRODUCTION
Practice Time

» Which of the following are legal LLRB trees?

(1) (iv)

(E) (H)
(B (Y, [C) (Y
() (o) (Y (Z) (A (T)

INTRODUCTION
Answer

» Which of the following are legal LLRB trees?
» iii and iv

» iis not balanced and iiis also not in symmetrical order

(11) (1)

(E) (H)
(B (Y, [C) (Y
(A (o) (W (Z) (A (1)

TODAY'S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

» Introduction

» Elementary red-black BST operations
» Insertion

» Mathematical analysis

» Historical context

ELEMENTARY RED-BLACK BST OPERATIONS

11

Left rotation: Orient a (temporarily) right-leaning red link to lean left

Left rotation

could be right or left,
h -~ red or black
N
X
less
than E

between\ / greater
EandS than S

Node rotatelLeft(Node h)
{
Node x = h.right;
h.right = x.left;
X.left = h;
x.color = h.color;
h.color = RED;
X.N = h.N;
h.N = 1 + size(h.left)
+ size(Ch.right);

return Xx;
} _x
h
N
grea ler
less between than S

than E EandS

Left rotate (right link of h)

ELEMENTARY RED-BLACK BST OPERATIONS

12

Right rotation: Orient a left-leaning red link to a (temporarily) lean right

Right rotation

~h

X
>@(®\
greater

less between than S

than E SandE

Node rotateRight(Node h)
{
Node x = h.left;
h.left = x.right;
X.right = h;
x.color = h.color;
h.color = RED;
X.N = h.N;
h.N = 1 + size(h.left)
+ size(h.right);

return x;
}
W
N
less
than E

between greater
Sand E than S

Right rotate (left link of h)

ELEMENTARY RED-BLACK BST OPERATIONS

Color flip: Recolor to split a (temporary) 4-node

. could be left
or right link

less between\ /between\ [/ greater
than A AandE)| EandS than S

void flipColors(Node h)

{
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;
}

red link attaches
_— middle node

o parent

“\
black links split
to 2-nodes

less between' /between' / greater
than A AandE)| Eand$S than S

Flipping colors to split a 4-node

TODAY'S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

» Introduction

» Elementary red-black BST operations
» Insertion

» Mathematical analysis

» Historical context

INSERTION 15

Basic strategy: Maintain 1-1 correspondence with 2-3 trees

» During internal operations, maintain:
» symmetric order
» perfect black balance.

» But we might violate color invariants. For example:

» Right-leaning red link.
» Two red children (temporary 4-node).
» Left-left red (temporary 4-node).

» Left-right red (temporary 4-node).

» To restore color invariant we will be performing rotations and color flips.

INSERTION
Insertion into a LLRB

» Do standard BST insertion and color the new link red.
» Repeat until color invariants restored:

» Both children red? Flip colors.

» Right link red? Rotate left.

» Two left reds in a row? Rotate right.

16

Red-black BST construction demo

red-black BST

INSERTION 18

Implementation

» Only three cases:

» Right child red; left child black: rotate left.
» Left child red; left-left grandchild red: rotate right.

» Both children red: flip colors.

// insert the key-value pair in the subtree rooted at h
private Node put(Node h, Key key, Value val) {

h
if (h == null) return new Node(key, val, RED, 1);
] h
int cmp = key.compareTo(h.key); P— ef%
r

if (cmp < 0) h.left = put(h.left, key, val); h otate

else if (cmp > 0) h.right = put(h.right, key, val);

else h.val = val;

// fix-up any right-leaning links \\\Ttht

if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); rotate _ﬂﬁD

h.size = size(h.left) + size(h.right) + 1;

if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h); colors

return h;

INSERTION

Visualization of insertion into a LLRB tree

» 255 insertions in ascending order.

19

INSERTION

Visualization of insertion into a LLRB tree

» 255 insertions in descending order.

20

INSERTION

Visualization of insertion into a LLRB tree

» 255 insertions in random order.

21

INSERTION

Practice Time - Worksheet #20

» Draw the LLRB tree that results when you insert the keys
10,18,7,15,16, 30, 25, 40, 60 in that order in an initially
empty tree.

22

INSERTION

ANSWER - Worksheet #20

» Draw the LLRB tree that results when you insert the keys
10,18,7,15,16, 30, 25, 40, 60 in that order in an initially
empty tree.

23

TODAY'S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

» Introduction

» Elementary red-black BST operations
» Insertion

» Mathematical analysis

» Historical context

MATHEMATICAL ANALYSIS

Balance in LLRB trees

» Height of LLRB trees is < 2logn in the worst case.

» Worst case is a 2-3 tree that is all 2-nodes except that the
left-most path is made up of 3-nodes.

» All ordered operations (min, max, floor, ceiling) etc. are
also O(log n).

25

PERFORMANCE

Summary for dictionary operations

Worst case Average case
Search Insert Delete Search Insert Delete
BST n n n logn logn \/ﬁ
2-3searchtree lOgn logn logn logn logn logn
Red-black BSTs logn logn log n log n logn log n

26

TODAY'S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

» Introduction

» Elementary red-black BST operations
» Insertion

» Mathematical analysis

» Historical context

HISTORICAL CONTEXT 28

Red-black trees
» A dichromatic framework for balanced trees. [Guibas and
Sedgewick, 1978].

» Why red-black? Xerox PARC had a laser printer and red and
black had the best contrast...

» Left-leaning red-black trees [Sedgewick, 2008]

» Inspired by difficulties in proper implementation of RB BSTs.

» RB BSTs have been involved in lawsuit because of improper
implementation.

HISTORICAL CONTEXT

Balanced trees in the wild

» Red-black trees are widely used as system dictionaries.

» e.g.,Java: java.util.TreeMap and
java.util.TreeSet.

» Other balanced BSTs: AVL, splay, randomized.
» 2-3 search trees are a subset of b-trees.
» See recommended textbook for more.

» B-trees are widely used for file systems and databases.

29

ASSIGNED READINGS AND PRACTICE PROBLEMS

30

Readings:

» Recommended Textbook: Chapter 3.3 (Pages 424-447)

» Website:

» https://algs4.cs.princeton.edu/33balanced/

» Visualization:

» https://algs4.cs.princeton.edu/GrowingTree/ (for LLRB trees)

Worksheet:

» Lecture 20 worksheet

https://algs4.cs.princeton.edu/33balanced/
https://algs4.cs.princeton.edu/GrowingTree/
https://cs.pomona.edu/classes/cs62/worksheets/Lecture20_worksheet.pdf

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 1

» Draw the left-leaning red-black BST that results when you
insert items with the keys E, A, S, Y, Q, U, T, |, O, N in that
order into an initially empty tree.

31

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 1

» Draw the left-leaning red-black BST that results when you
insert items with the keys E, A, S, Y, Q, U, T, |, O, N in that
order into an initially empty tree.

S

32

