CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

19: 2–3 Search Trees

Alexandra Papoutsaki
she/her/hers
Lecture 19: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance
Visualization of insertion into a binary search tree

- 255 insertions in random order.
Order of growth for dictionary operations

<table>
<thead>
<tr>
<th></th>
<th>Worst case</th>
<th></th>
<th>Average case</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Search</td>
<td>Insert</td>
<td>Delete</td>
<td>Search</td>
<td>Insert</td>
<td>Delete</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>log n</td>
<td>log n</td>
<td>\sqrt{n}</td>
</tr>
<tr>
<td>Goal</td>
<td>log n</td>
<td>log n</td>
<td>log n</td>
<td>log n</td>
<td>log n</td>
<td>log n</td>
</tr>
</tbody>
</table>
2-3 SEARCH TREES

2-3 tree

- **Definition:** A 2-3 tree is either empty or a
 - **2-node:** one key (and associated value) and two links, a left to a 2-3 search tree with smaller keys, and a right to a 2-3 search tree with larger keys (similarly to standard BSTs), or a
 - **3-node:** two keys (and associated values) and three links, a left to a 2-3 search tree with smaller keys than first key, a middle to a 2-3 search tree with keys between the node’s keys, and a right to a 2-3 search tree with larger keys than the second key.

- **Symmetric order:** In-order traversal yields keys in ascending order.

- **Perfect balance:** Every path from root to null link (empty tree) has the same length.
Example of a 2-3 tree

- 2-node, business as usual with BSTs.
 - (e.g., EJ are smaller than M and R is larger than M).
- In 3-node,
 - left link points to 2-3 search tree with smaller keys than first key,
 - (e.g., AC are smaller than E.)
 - middle link points to 2-3 search tree with keys between first and second key,
 - (e.g. H is between E and J.)
 - right link points to 2-3 search tree with keys larger than second key.
 - (e.g, L is larger than J).
Lecture 19: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance
How to search for a key

- Compare search key against (every) key in node.
- Find interval containing search key (left, potentially middle, or right).
- Follow associated link, recursively.
3.3 2–3 Tree Demo

- search
- insertion
- construction
Lecture 19: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance
How to insert into a 2-node at bottom

- Search for key and add new key to 2-node to create a 3-node.
Insert into a 2-node at bottom.
 • Search for key, as usual.
 • Replace 2-node with 3-node.
How to insert into a tree consisting of a single 3-node

- Add new key to 3-node to create a temporary 4-node.
- Move middle key in 4-node into parent.
- Split 4-node into two 2-nodes.
- Height went up by 1.
How to insert into a 3-node whose parent is a 2-node

- Add new key to 3-node to create a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent.
- Replace 2-node parent with 3-node.
How to insert into a 3-node whose parent is a 3-node

- Add new key to 3-node to create a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent creating a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent.
- Repeat up the tree, as necessary.
Splitting the root

- If end up with a temporary 4-node root, split into three 2-nodes.
- Increases height by 1 but perfect balance is preserved.
2–3 tree demo: insertion

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

insert K
Lecture 19: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance
2–3 tree demo: construction

insert R
Practice Time - Worksheet #19

- Draw the 2-3 tree that results when you insert the keys: E A S Y Q U T I O N in that order in an initially empty tree.
CONSTRUCTION

ANSWER

EASYQUATION

https://www.cs.usfca.edu/~galles/visualization/BTree.html
Lecture 19: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance
Height of 2-3 search trees

- **Worst case:** $\log n$ (all 2-nodes).

- **Best case:** $\log_3 n = 0.631 \log n$ (all 3-nodes)

 - That means that storing a million nodes will lead to a tree with height between 12 and 20, and storing a billion nodes to a tree with height between 19 and 30 (not bad!).

- Search and insert are $O(\log n)$!

- But implementation is a pain and the overhead incurred could make the algorithms slower than standard BST search and insert.

- We did provide insurance against a worst case but we would prefer the overhead cost for that insurance to be low. Stay tuned!
Summary for dictionary operations

<table>
<thead>
<tr>
<th></th>
<th>Worst case</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Search</td>
<td>Insert</td>
<td>Delete</td>
</tr>
<tr>
<td>BST</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Average case</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>\sqrt{n}</td>
</tr>
<tr>
<td>2-3 search trees</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
</tr>
</tbody>
</table>
Readings:

- Recommended Textbook: Chapter 3.3 (Pages 424-447)
- Website:
 - https://algs4.cs.princeton.edu/33balanced/
- Visualization:
 - https://www.cs.usfca.edu/~galles/visualization/BTree.html (for 2-3 trees)

Worksheet:

- Lecture 19 worksheet
Problem 1 (Problem 3.3.2 in the book)

- Draw the 2-3 tree that results when you insert the keys Y, L, P, M, X, H, C, R, A, E, S) in that order into an initially empty tree.
Problem 2 (Problem 3.3.3 in the book)

- Find an insertion order for the keys S, E, A, R, C, H, X, M that leads to a 2-3 search tree of height 1.
Draw the 2-3 tree that results when you insert the keys Y, L, P, M, X, H, C, R, A, E, S) in that order into an initially empty tree.
ANSWER 2 (Problem 3.3.3 in the book)

▸ Find an insertion order for the keys S, E, A, R, C, H, X, M that leads to a 2-3 search tree of height 1.

▸ Insertion order: E A M X R C H S