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TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Dictionaries and Binary Search Trees

▸ Dictionaries


▸ Binary Search Trees
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DICTIONARIES

Dictionaries

▸ Also known as: symbol tables, maps, indices, associative 
arrays.


▸ Key-value pair abstractions that support two operations:


▸ Insert a key-value pair.


▸ Given a key, search for the corresponding value.


▸ Supported either with built-in or external libraries by the 
majority of programming languages.
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DICTIONARIES

Basic dictionary API 

▸ public class Dictionary <Key extends Comparable<Key>, Value>

▸ Dictionary(): create an empty dictionary. By convention, values are not null.


▸ void put(Key key, Value val): insert key-value pair.


▸ Overwrites old value with new value if key already exists.


▸ Value get(Key key): return value associated with key.


▸ Returns null if key not present.


▸ boolean contains(Key key): is there a value associated with key?


▸ Iterable keys(): all the keys in the dictionary.


▸ void delete(Key key): delete key and associated value.


▸ boolean isEmpty(): is the dictionary empty?


▸ int size(): number of key-value pairs.
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DICTIONARIES

Ordered dictionaries
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DICTIONARIES

Ordered dictionary API 

▸ Key min(): smallest key.


▸ Key max(): largest key.


▸ Key floor(Key key): largest key less than or equal to given key.


▸ Key ceiling(Key key): smallest key greater than or equal to given key.


▸ int rank(Key key): number of keys less that given key.


▸ Key select(int k): key with rank k.


▸ Iterable keys(): all keys in dictionary in sorted order.


▸ Iterable keys(int lo, int hi): keys in [lo, …, hi] in sorted order.
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DICTIONARIES

Printed dictionaries are all around us

▸ Dictionary: key = word, value = definition.


▸ Encyclopedia: key = term, value = article.


▸ Phonebook: key = name, value = phone number.


▸ Math table: key = math functions and input,  
value = function output.


▸ Unsupported operations:


▸ Add a new key and associated value.


▸ Remove a given key and associated value.


▸ Change value associated with a given key.
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TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Dictionaries and Binary Search Trees

▸ Dictionaries


▸ Binary search Trees
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BINARY SEARCH TREES

Definitions

▸ Binary Search Tree: A binary tree in symmetric order.


▸ Symmetric order: Each node has a key, and every node’s 
key is:


▸ Larger than all keys in its left subtree.


▸ Smaller than all keys in its right subtree.


▸ Our textbook uses BSTs to implement dictionaries, 
therefore each node holds a key-value pair. Other 
implementations hold only a key.
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BINARY SEARCH TREES

Differences between heaps and BSTs

*: when BSTs used to implement dictionaries.
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Heap BST

Used to implement Priority queues Dictionaries

Supported operations Insert, delete max insert, search, delete, 
ordered operations

What is inserted Keys Key-value pairs

Underlying data structure (Resizing) array Linked nodes

Tree shape Complete binary tree Depends on data

Ordering of keys Heap-ordered Symmetrically-ordered

Duplicate keys allowed? Yes No*



BINARY SEARCH TREES

BST representation of dictionaries
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▸ We will use an inner class Node that is composed by:


▸ A Key that is comparable and a Value


▸ A reference to the root nodes of the left (smaller keys) 
and right (larger keys) subtrees. 


▸ Potentially, the total number of nodes in the subtree that 
has root this node.


▸ A BST has a reference to a Node root.



BINARY SEARCH TREES

BST and Node implementation
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public class BST<Key extends Comparable<Key>, Value> {
   private Node root;              // root of BST
 
   private class Node {
        private Key key;           // sorted by key
        private Value val;         // associated value
        private Node left, right;  // roots of left and right subtrees
        private int size;          // #nodes in subtree rooted at this

        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }



BINARY SEARCH TREES

Search for a key
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▸ If less than key in node go to left subtree. 


▸ If greater than key in node go to right subtree.


▸ If given key and key at examined node are equal, search hit.


▸ Return value corresponding to given key, or null if no such key.


▸ In other implementations, you return the last node you 
reached.


▸ Number of compares is equal to the depth of the node + 1. 



BINARY SEARCH TREES

Search example
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BINARY SEARCH TREES

Search - iterative implementation
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▸ public Value get(Key key) {  
     Node x = root;  
     while (x != null) {  
           int cmp = key.compareTo(x.key);  
           if (cmp < 0)  
                   x = x.left;  
           else if (cmp > 0)  
                   x = x.right;  
           else if (cmp == 0)  
                   return x.val;  
      }  
      return null;  
}



BINARY SEARCH TREES

Search - recursive implementation
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‣ public Value get(Key key) {  
     return get(root, key);  
}

‣ private Value get(Node x, Key key) {  
     if (x == null)  
           return null;  
     int cmp = key.compareTo(x.key);  
     if (cmp < 0)  
         return get(x.left, key);  
     else if (cmp > 0)  
         return get(x.right, key);            
     else                
         return x.val;       
}



BINARY SEARCH TREES

Practice Time - Problem 1 Worksheet #18

▸ Search for the keys 4 and 9 in the following BST:
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BINARY SEARCH TREES

Insert
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▸ If less than key in node go left. 


▸ If greater than key in node go right.


▸ If null, insert.


▸ If already exists, update value.


▸ Number of compares is equal to the depth of the node + 1. 



BINARY SEARCH TREES

Insert example

19



BINARY SEARCH TREES

Insert
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▸ public void put(Key key, Value val) {  
     root = put(root, key, val);  
}  
private Node put(Node x, Key key, Value val) {  
     if (x == null)  
           return new Node(key, val, 1);  
     int cmp = key.compareTo(x.key);  
     if (cmp < 0)  
         x.left = put(x.left, key, val);  
     else if (cmp > 0)  
         x.right = put(x.right, key, val);            
     else                
         x.val = val;  
     x.size = 1 + size(x.left) + size(x.right);  
     return x;    
}



BINARY SEARCH TREES

Practice Time - Problem 2 Worksheet #18

▸ Add the keys 4 and then the key 9 in the following BST:
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BINARY SEARCH TREES

Tree shape
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▸ The same set of keys can result to different BSTs based on 
their order of insertion.


▸ Number of compares for search/insert is equal to depth of 
node +1.



BINARY SEARCH TREES

BSTs mathematical analysis
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▸ If  distinct keys are inserted into a BST in random order, the 
expected number of compares of search/insert is .


▸ If  distinct keys are inserted into a BST in random order, the 
expected height of tree is  . [Reed, 2003].


▸ Worst case height is  but highly unlikely.


▸ Keys would have to come (reversely) sorted!


▸ All ordered operations in a dictionary implemented with a BST 
depend on the height of the BST.

n
O(log n)

n
O(log n)

n



BINARY SEARCH TREES

Hibbard deletion: Delete node which is a leaf
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▸ Simply delete node.


▸ Example: delete 52 locates a node which is a leaf and removes it.




BINARY SEARCH TREES

Hibbard deletion: Delete node with one child
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▸ Delete node and replace it with its child.


▸ Example: delete 70 locates a node which has one child and replaces it with the child.




BINARY SEARCH TREES

Hibbard deletion: Delete node with two children
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▸ Delete node and replace it with successor (node with smallest of the larger keys). 
Move successor’s child (if any) where successor was.


▸ Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst

https://visualgo.net/en/bst


BINARY SEARCH TREES 28

   public void delete(Key key) {
       root = delete(root, key);
   }

    private Node delete(Node x, Key key) {
        if (x == null) return null;

        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            x.left  = delete(x.left,  key);
        else if (cmp > 0)  
            x.right = delete(x.right, key);
        else { 
            if (x.right == null)
                return x.left;
            if (x.left  == null)
                return x.right;
            Node t = x; //replace with successor
            x = min(t.right);
            x.right = deleteMin(t.right);
            x.left = t.left;
        } 
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }



BINARY SEARCH TREES

Practice Time - Problem 3 Worksheet #18

▸ Delete the node 21 following Hibbard’s deletion
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BINARY SEARCH TREES

Answer

▸ Delete the node 21 following Hibbard’s deletion
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BINARY SEARCH TREES

Hibbard’s deletion
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▸ Unsatisfactory solution. If we were to perform many insertions and deletions 
the BST ends up being not symmetric and skewed to the left.


▸ Extremely complicated analysis, but average cost of deletion ends up 
being . Let’s simplify things by saying it stays .


▸ No one has proven that alternating between the predecessor and 
successor will fix this.


▸ Hibbard devised the algorithm in 1962. Still no algorithm for efficient  
deletion in Binary Search Trees!


▸ Overall, BSTs can have  worst-case for search, insert, and delete. We 
want to do better (see future lectures).

n O(log n)

O(n)



TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Dictionaries and Binary Search Trees

▸ Dictionaries


▸ Binary Search Trees
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapters 3.2 (Pages 396–414)


▸ Website:


▸ https://algs4.cs.princeton.edu/32bst/


▸ Visualization:


▸ https://visualgo.net/en/bst
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Worksheet

▸ Lecture 18 worksheet

https://algs4.cs.princeton.edu/32bst/
https://visualgo.net/en/bst
https://cs.pomona.edu/classes/cs62/worksheets/Lecture18_worksheet.pdf


ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 1 
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▸ Draw the BST that results when you insert the keys  5, 1, 19, 25, 17, 5, 19, 
20, 9, 15, 14 in that order. 



ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 2
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▸ Inserting the keys in the order A X C S E R H into an initially empty BST 
gives a worst-case tree where every node has one null link (one child), 
except one at the bottom that has two null links (it's a leaf). Give five other 
orderings of these keys that produce worst-case trees.



ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 3
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▸ Give five orderings of the keys A X C S E R H that when inserted into an 
initially empty binary search tree, produce best-case trees.



ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 1
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▸ Draw the BST that results when you insert the keys  5, 1, 19, 25, 17, 5, 19, 
20, 9, 15, 14 in that order. 


▸ -2 indicates that this node has been updated to the second value 
associated with that key.



ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 2
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▸ Inserting the keys in the order A X C S E R H into an initially empty BST 
gives a worst-case tree where every node has one null link (one child), 
except one at the bottom that has two null links (it's a leaf). Give five other 
orderings of these keys that produce worst-case trees.


▸ A C E H R S X


▸ X S R H E C A


▸ X A S C R E H


▸ X A S C R H E


▸ A X C S E H R



ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 3
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▸ Inserting the keys in the order A X C S E R H into an initially empty BST 
gives a worst-case tree where every node has one null link (one child), 
except one at the bottom that has two null links (it's a leaf). Give five other 
orderings of these keys that produce worst-case trees.


▸ H C S A E R X


▸ H C A E S R X


▸ H C E A S R X


▸ H S R X C A E


▸ H S X R C A E


