
CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

18: Dictionaries and Binary Search Trees

SEARCHING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki 
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Dictionaries and Binary Search Trees

▸ Dictionaries

▸ Binary Search Trees

2

DICTIONARIES

Dictionaries

▸ Also known as: symbol tables, maps, indices, associative
arrays.

▸ Key-value pair abstractions that support two operations:

▸ Insert a key-value pair.

▸ Given a key, search for the corresponding value.

▸ Supported either with built-in or external libraries by the
majority of programming languages.

3

DICTIONARIES

Basic dictionary API

▸ public class Dictionary <Key extends Comparable<Key>, Value>

▸ Dictionary(): create an empty dictionary. By convention, values are not null.

▸ void put(Key key, Value val): insert key-value pair.

▸ Overwrites old value with new value if key already exists.

▸ Value get(Key key): return value associated with key.

▸ Returns null if key not present.

▸ boolean contains(Key key): is there a value associated with key?

▸ Iterable keys(): all the keys in the dictionary.

▸ void delete(Key key): delete key and associated value.

▸ boolean isEmpty(): is the dictionary empty?

▸ int size(): number of key-value pairs.

4

DICTIONARIES

Ordered dictionaries

5

DICTIONARIES

Ordered dictionary API

▸ Key min(): smallest key.

▸ Key max(): largest key.

▸ Key floor(Key key): largest key less than or equal to given key.

▸ Key ceiling(Key key): smallest key greater than or equal to given key.

▸ int rank(Key key): number of keys less that given key.

▸ Key select(int k): key with rank k.

▸ Iterable keys(): all keys in dictionary in sorted order.

▸ Iterable keys(int lo, int hi): keys in [lo, …, hi] in sorted order.

6

DICTIONARIES

Printed dictionaries are all around us

▸ Dictionary: key = word, value = definition.

▸ Encyclopedia: key = term, value = article.

▸ Phonebook: key = name, value = phone number.

▸ Math table: key = math functions and input,  
value = function output.

▸ Unsupported operations:

▸ Add a new key and associated value.

▸ Remove a given key and associated value.

▸ Change value associated with a given key.

7

TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Dictionaries and Binary Search Trees

▸ Dictionaries

▸ Binary search Trees

8

BINARY SEARCH TREES

Definitions

▸ Binary Search Tree: A binary tree in symmetric order.

▸ Symmetric order: Each node has a key, and every node’s
key is:

▸ Larger than all keys in its left subtree.

▸ Smaller than all keys in its right subtree.

▸ Our textbook uses BSTs to implement dictionaries,
therefore each node holds a key-value pair. Other
implementations hold only a key.

9

BINARY SEARCH TREES

Differences between heaps and BSTs

*: when BSTs used to implement dictionaries.

10

Heap BST

Used to implement Priority queues Dictionaries

Supported operations Insert, delete max insert, search, delete,
ordered operations

What is inserted Keys Key-value pairs

Underlying data structure (Resizing) array Linked nodes

Tree shape Complete binary tree Depends on data

Ordering of keys Heap-ordered Symmetrically-ordered

Duplicate keys allowed? Yes No*

BINARY SEARCH TREES

BST representation of dictionaries

11

▸ We will use an inner class Node that is composed by:

▸ A Key that is comparable and a Value

▸ A reference to the root nodes of the left (smaller keys)
and right (larger keys) subtrees.

▸ Potentially, the total number of nodes in the subtree that
has root this node.

▸ A BST has a reference to a Node root.

BINARY SEARCH TREES

BST and Node implementation

12

public class BST<Key extends Comparable<Key>, Value> {
 private Node root; // root of BST

 private class Node {
 private Key key; // sorted by key
 private Value val; // associated value
 private Node left, right; // roots of left and right subtrees
 private int size; // #nodes in subtree rooted at this

 public Node(Key key, Value val, int size) {
 this.key = key;
 this.val = val;
 this.size = size;
 }
 }

BINARY SEARCH TREES

Search for a key

13

▸ If less than key in node go to left subtree.

▸ If greater than key in node go to right subtree.

▸ If given key and key at examined node are equal, search hit.

▸ Return value corresponding to given key, or null if no such key.

▸ In other implementations, you return the last node you
reached.

▸ Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

Search example

14

BINARY SEARCH TREES

Search - iterative implementation

15

▸ public Value get(Key key) {  
 Node x = root;  
 while (x != null) {  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 x = x.left;  
 else if (cmp > 0)  
 x = x.right;  
 else if (cmp == 0)  
 return x.val;  
 }  
 return null;  
}

BINARY SEARCH TREES

Search - recursive implementation

16

‣ public Value get(Key key) {  
 return get(root, key);  
}

‣ private Value get(Node x, Key key) {  
 if (x == null)  
 return null;  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 return get(x.left, key);  
 else if (cmp > 0)  
 return get(x.right, key);  
 else  
 return x.val;  
}

BINARY SEARCH TREES

Practice Time - Problem 1 Worksheet #18

▸ Search for the keys 4 and 9 in the following BST:

17

BINARY SEARCH TREES

Insert

18

▸ If less than key in node go left.

▸ If greater than key in node go right.

▸ If null, insert.

▸ If already exists, update value.

▸ Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

Insert example

19

BINARY SEARCH TREES

Insert

20

▸ public void put(Key key, Value val) {  
 root = put(root, key, val);  
}  
private Node put(Node x, Key key, Value val) {  
 if (x == null)  
 return new Node(key, val, 1);  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 x.left = put(x.left, key, val);  
 else if (cmp > 0)  
 x.right = put(x.right, key, val);  
 else  
 x.val = val;  
 x.size = 1 + size(x.left) + size(x.right);  
 return x;  
}

BINARY SEARCH TREES

Practice Time - Problem 2 Worksheet #18

▸ Add the keys 4 and then the key 9 in the following BST:

21

22

BINARY SEARCH TREES

Tree shape

23

▸ The same set of keys can result to different BSTs based on
their order of insertion.

▸ Number of compares for search/insert is equal to depth of
node +1.

BINARY SEARCH TREES

BSTs mathematical analysis

24

▸ If distinct keys are inserted into a BST in random order, the
expected number of compares of search/insert is .

▸ If distinct keys are inserted into a BST in random order, the
expected height of tree is . [Reed, 2003].

▸ Worst case height is but highly unlikely.

▸ Keys would have to come (reversely) sorted!

▸ All ordered operations in a dictionary implemented with a BST
depend on the height of the BST.

n
O(log n)

n
O(log n)

n

BINARY SEARCH TREES

Hibbard deletion: Delete node which is a leaf

25

▸ Simply delete node.

▸ Example: delete 52 locates a node which is a leaf and removes it.

BINARY SEARCH TREES

Hibbard deletion: Delete node with one child

26

▸ Delete node and replace it with its child.

▸ Example: delete 70 locates a node which has one child and replaces it with the child.

BINARY SEARCH TREES

Hibbard deletion: Delete node with two children

27

▸ Delete node and replace it with successor (node with smallest of the larger keys).
Move successor’s child (if any) where successor was.

▸ Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst

https://visualgo.net/en/bst

BINARY SEARCH TREES 28

 public void delete(Key key) {
 root = delete(root, key);
 }

 private Node delete(Node x, Key key) {
 if (x == null) return null;

 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = delete(x.left, key);
 else if (cmp > 0)  
 x.right = delete(x.right, key);
 else {
 if (x.right == null)
 return x.left;
 if (x.left == null)
 return x.right;
 Node t = x; //replace with successor
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.size = size(x.left) + size(x.right) + 1;
 return x;
 }

BINARY SEARCH TREES

Practice Time - Problem 3 Worksheet #18

▸ Delete the node 21 following Hibbard’s deletion

29

BINARY SEARCH TREES

Answer

▸ Delete the node 21 following Hibbard’s deletion

30

BINARY SEARCH TREES

Hibbard’s deletion

31

▸ Unsatisfactory solution. If we were to perform many insertions and deletions
the BST ends up being not symmetric and skewed to the left.

▸ Extremely complicated analysis, but average cost of deletion ends up
being . Let’s simplify things by saying it stays .

▸ No one has proven that alternating between the predecessor and
successor will fix this.

▸ Hibbard devised the algorithm in 1962. Still no algorithm for efficient
deletion in Binary Search Trees!

▸ Overall, BSTs can have worst-case for search, insert, and delete. We
want to do better (see future lectures).

n O(log n)

O(n)

TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Dictionaries and Binary Search Trees

▸ Dictionaries

▸ Binary Search Trees

32

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapters 3.2 (Pages 396–414)

▸ Website:

▸ https://algs4.cs.princeton.edu/32bst/

▸ Visualization:

▸ https://visualgo.net/en/bst

33

Worksheet

▸ Lecture 18 worksheet

https://algs4.cs.princeton.edu/32bst/
https://visualgo.net/en/bst
https://cs.pomona.edu/classes/cs62/worksheets/Lecture18_worksheet.pdf

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 1

34

▸ Draw the BST that results when you insert the keys 5, 1, 19, 25, 17, 5, 19,
20, 9, 15, 14 in that order.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 2

35

▸ Inserting the keys in the order A X C S E R H into an initially empty BST
gives a worst-case tree where every node has one null link (one child),
except one at the bottom that has two null links (it's a leaf). Give five other
orderings of these keys that produce worst-case trees.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 3

36

▸ Give five orderings of the keys A X C S E R H that when inserted into an
initially empty binary search tree, produce best-case trees.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 1

37

▸ Draw the BST that results when you insert the keys 5, 1, 19, 25, 17, 5, 19,
20, 9, 15, 14 in that order.

▸ -2 indicates that this node has been updated to the second value
associated with that key.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 2

38

▸ Inserting the keys in the order A X C S E R H into an initially empty BST
gives a worst-case tree where every node has one null link (one child),
except one at the bottom that has two null links (it's a leaf). Give five other
orderings of these keys that produce worst-case trees.

▸ A C E H R S X

▸ X S R H E C A

▸ X A S C R E H

▸ X A S C R H E

▸ A X C S E H R

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 3

39

▸ Inserting the keys in the order A X C S E R H into an initially empty BST
gives a worst-case tree where every node has one null link (one child),
except one at the bottom that has two null links (it's a leaf). Give five other
orderings of these keys that produce worst-case trees.

▸ H C S A E R X

▸ H C A E S R X

▸ H C E A S R X

▸ H S R X C A E

▸ H S X R C A E

