£35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

18: Dictionaries and Binary Search Trees

\ Alexandra Papoutsak
@ ' shelher/hers

TODAY'S LECTURE IN A NUTSHELL

Lecture 18: Dictionaries and Binary Search Trees

» Dictionaries

» Binary Search Trees

DICTIONARIES

Dictionaries

» Also known as: symbol tables, maps, indices, associative
arrays.

» Key-value pair abstractions that support two operations:

» Insert a key-value pair.

» Given a key, search for the corresponding value.

» Supported either with built-in or external libraries by the
majority of programming languages.

DICTIONARIES

Basic dictionary API

» public class Dictionary <Key extends Comparable<Key>, Value>

» Dictionary(): create an empty dictionary. By convention, values are not null.
» void put(Key key, Value val):insert key-value pair.
» Overwrites old value with new value if key already exists.
» Value get(Key key): return value associated with key.
» Returns null if key not present.
» boolean contains(Key key): is there a value associated with key?
» Iterable keys(): all the keys in the dictionary.
» void delete(Key key): delete key and associated value.
» boolean 1sEmpty():isthe dictionary empty?

» int size(): number of key-value pairs.

DICTIONARIES

Ordered dictionaries

keys

values

min()—=09:00:00 Chicago
09:00:03 Phoenix
09:00:13

get(09:00:13)—9
09
floor(09:05:00)—09
09

select(7)—09

09
09
09
keys(09:15:00, 09:25:00)—|09
09
09
09
ceiling(09:30:00)—= 09
09

max()— 09

$1ze(09:15:00, 09:25:00) s 5
rank(09:10:25) s 7

:00:
:01:
:03:
:10:
:10:
:14:
:19:
:19:
:21:
yri
122
¥+
:35:
:36:
:37:

59
10
13
11
25
25
32
46
05
43
54
52
21
14
44

— Houston

Chicago
Houston
Chicago
Seattle
Seattle
Phoenix
Chicago
Chicago
Chicago
Seattle
Seattle
Chicago
Chicago
Seattle
Phoenix

DICTIONARIES 6

Ordered dictionary API

» Key min(): smallest key.

» Key max(): largest key.

» Key floor(Key key): largest key less than or equal to given key.

» Key ceiling(Key key): smallest key greater than or equal to given key.
» 1nt rank(Key key): number of keys less that given key.

» Key select(int k): key with rank k.

» ITterable keys(): all keys in dictionary in sorted order.

» Iterable keys(int lo, int hi):keysin [lo, .., hi] insorted order.

DICTIONARIES

Printed dictionaries are all around us

» Dictionary: key = word, value = definition.

» Encyclopedia: key = term, value = article.

» Phonebook: key = name, value = phone number.

» Math table: key = math functions and input,
value = function output.

» Unsupported operations:
» Add a new key and associated value.
» Remove a given key and associated value.

» Change value associated with a given key.

em- - ¥

,‘ (-
': .
v, >
>

L 'A

F;

=]

B
b
L

El
G
g

H

»[polT

AA
s G FTTWAA
.:mh" | '::'i A RN v

YA

'
O - ios

TODAY'S LECTURE IN A NUTSHELL

Lecture 18: Dictionaries and Binary Search Trees

» Dictionaries

» Binary search Trees

parent of Aand R

BINARY SEARCH TREES left link 3 9
1 ()
0 N value
Definitions C assocated
! \
keys smaller than € keys Inr‘ger than E

» Binary Search Tree: A binary tree in symmetric order.

» Symmetric order: Each node has a key, and every node’s
key is:

» Larger than all keys in its left subtree.
» Smaller than all keys in its right subtree.

» Our textbook uses BSTs to implement dictionaries,
therefore each node holds a key-value pair. Other
implementations hold only a key.

BINARY SEARCH TREES

Differences between heaps and BSTs

10

Heap BST
Used to implement Priority queues Dictionaries
Supported operations Insert, delete max ir::l:'r :za;;:r:teilcf::'
What is inserted Keys Key-value pairs
Underlying data structure (Resizing) array Linked nodes
Tree shape Complete binary tree Depends on data
Ordering of keys Heap-ordered Symmetrically-ordered
Duplicate keys allowed? Yes No*

*: when BSTs used to implement dictionaries.

BINARY SEARCH TREES 11
BST representation of dictionaries

» We will use an inner class Node that is composed by:
» A Key thatis comparable and a Value

» A reference to the root nodes of the left (smaller keys)
and right (larger keys) subtrees.

» Potentially, the total number of nodes in the subtree that
has root this node.

» A BST has a reference to a Node root.

BINARY SEARCH TREES 12

BST and Node implementation

public class BST<Key extends Comparable<Key>, Value> {
private Node root; // root of BST

private class Node {

private Key key; // sorted by key

private Value val; // associated value

private Node left, right; // roots of left and right subtrees
private int size; // #nodes 1n subtree rooted at this

public Node(Key key, Value val, int size) {
this.key = key;
this.val = val;
this.s1ze = size;

parent OfA and R

BINARY SEARCH TREES left link))

(S)
ofE T
9 T value
G m associated
with R

! \

Search for a key

keys smaller than € keys larger than E

» If less than key in node go to left subtree.
» If greater than key in node go to right subtree.
» If given key and key at examined node are equal, search hit.

» Return value corresponding to given key, or null if no such key.

» In other implementations, you return the last node you
reached.

» Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

14

Search example

successful search for R unsuccessful searchfor T

R 1s less than S

so look to the left T is greater than S

black nodes could so look to the right

match the search key

®R =R

gray nodes cannot 0 | \
R is greater than E match the search key Vo T is less tharn X
so look to the right so look to the left

link is null
so T is not 1n tree

(search miss)

®\ found R
(search hit)
so return value

Successful (left) and unsuccessful (right) search in a BST

BINARY SEARCH TREES

Search - iterative implementation

» public Value get(Key key) {
Node x = root;
while (x !'= null) {
int cmp = key.compareTo(x.key);
1f (cmp < 0)
X = X.left;
else 1f (cmp > 0)
X = X.right;
else 1f (cmp == 0)
return x.val;

¥

return null;

15

BINARY SEARCH TREES

Search - recursive implementation

" public Value get(Key key) {
return get(root, key);

¥

" private Value get(Node x, Key key) {
1f (X == null)
return null;
int cmp = key.compareTo(x.key);
1f (cmp < @)
return get(x.left, key);
else 1f (cmp > @)
return get(x.right, key);
else
return x.val;

16

BINARY SEARCH TREES

Practice Time - Problem 1 Worksheet #18

» Search for the keys 4 and 9 in the following BST:

17

BINARY SEARCH TREES

Insert

» If less than key in node go left.

parent OfA and R

key
left link \ S)
ofE T e
Q N~ value
@ 0 associated
with R
! X
keys smaller than € keys larger than E

» If greater than key in node go right.

» If null, insert.

» If already exists, update value.

» Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

19

Insert example

inserting L

search for L ends L ’
at this null link \

reset links and
increment counts -
on the way up

Insertion into a BST

BINARY SEARCH TREES

Insert

» public void put(Key key, Value val) {
root = put(root, key, val);
3
private Node put(Node x, Key key, Value val) {
1f (X == null)
return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
1f (cmp < 0)
x.left = put(x.left, key, val);
else 1f (cmp > 0)
x.right = put(x.right, key, val);
else
x.val = val;
x.s1ze = 1 + size(x.left) + size(x.right);
return Xx;

20

BINARY SEARCH TREES
Practice Time - Problem 2 Worksheet #18

» Add the keys 4 and then the key 9 in the following BST:

21

A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREE DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

BINARY SEARCH TREES 23
Tree shape

» The same set of keys can result to different BSTs based on
their order of insertion.

» Number of compares for search/insert is equal to depth of
node +1.

typical case

best case 0
Cl (S)
(A) (B} (R)(X)

worst case

BINARY SEARCH TREES 24
BSTs mathematical analysis

» If n distinct keys are inserted into a BST in random order, the

expected number of compares of search/insert is O(log n).

» If n distinct keys are inserted into a BST in random order, the
expected height of tree is O(logn). [Reed, 2003].

» Worst case height is n but highly unlikely.
» Keys would have to come (reversely) sorted!

» All ordered operations in a dictionary implemented with a BST
depend on the height of the BST.

BINARY SEARCH TREES

Hibbard deletion: Delete node which is a leaf

» Simply delete node.

» Example: delete 52 locates a node which is a leaf and removes it.

25

BINARY SEARCH TREES

Hibbard deletion: Delete node with one child

» Delete node and replace it with its child.

» Example: delete 70 locates a node which has one child and replaces it with the child.

26

BINARY SEARCH TREES

Hibbard deletion: Delete node with two children

» Delete node and replace it with successor (node with smallest of the larger keys).

Move successor’s child (if any) where successor was.

» Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst

27

https://visualgo.net/en/bst

BINARY SEARCH TREES

public void delete(Key key) {
root = delete(root, key);

}

private Node delete(Node x, Key key) {
1f (X == null) return null;

int cmp = key.compareTo(x.key);
1f (cmp < 0)
x.left = delete(x.left, key);
else if (cmp > 0)
x.right = delete(x.right, key);
else {
1f (x.right == null)
return x.left;
1f (x.left == null)
return x.right;
Node t = x; //replace with successor
X = min(t.right);
x.right = deleteMin(t.right);
x.left = t.left;
ks
Xx.s1ze = size(x.left) + size(x.right) + 1;
return Xx;

BINARY SEARCH TREES

Practice Time - Problem 3 Worksheet #18

» Delete the node 21 following Hibbard'’s deletion

29

BINARY SEARCH TREES
Answer

» Delete the node 21 following Hibbard'’s deletion

30

BINARY SEARCH TREES 31

Hibbard’s deletion

» Unsatisfactory solution. If we were to perform many insertions and deletions
the BST ends up being not symmetric and skewed to the left.

» Extremely complicated analysis, but average cost of deletion ends up
being \/; Let’s simplify things by saying it stays O(log n).

» No one has proven that alternating between the predecessor and
successor will fix this.

» Hibbard devised the algorithm in 1962. Still no algorithm for efficient
deletion in Binary Search Trees!

» Overall, BSTs can have O(n) worst-case for search, insert, and delete. We
want to do better (see future lectures).

TODAY'S LECTURE IN A NUTSHELL

32

Lecture 18: Dictionaries and Binary Search Trees

» Dictionaries

» Binary Search Trees

ASSIGNED READINGS AND PRACTICE PROBLEMS

33

Readings:

» Recommended Textbook: Chapters 3.2 (Pages 396-414)

» Website:

» https://algs4.cs.princeton.edu/32bst/

» Visualization:

» https://visualgo.net/en/bst

Worksheet

» Lecture 18 worksheet

https://algs4.cs.princeton.edu/32bst/
https://visualgo.net/en/bst
https://cs.pomona.edu/classes/cs62/worksheets/Lecture18_worksheet.pdf

ASSIGNED READINGS AND PRACTICE PROBLEMS

34

Problem 1

» Draw the BST that results when you insert the keys 5,1,19,25,17,5, 19,
20,9,15, 14 in that order.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Problem 2

» Inserting the keys in the order AX CS E RH into an initially empty BST
gives a worst-case tree where every node has one null link (one child),
except one at the bottom that has two null links (it's a leaf). Give five other
orderings of these keys that produce worst-case trees.

35

ASSIGNED READINGS AND PRACTICE PROBLEMS

36

Problem 3

» Give five orderings of the keys A X CS E R H that when inserted into an
initially empty binary search tree, produce best-case trees.

ASSIGNED READINGS AND PRACTICE PROBLEMS 37

ANSWER 1

» Draw the BST that results when you insert the keys 5,1,19,25,17,5, 19,
20,9,15, 14 in that order.

» -2 indicates that this node has been updated to the second value
associated with that key.

9 29

25

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 2

» Inserting the keys in the order AX CS E RH into an initially empty BST
gives a worst-case tree where every node has one null link (one child),
except one at the bottom that has two null links (it's a leaf). Give five other
orderings of these keys that produce worst-case trees.

» ACEHRSX

» XSRHECA

» XASCREH

» XASCRHE

» AXCSEHR

38

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 3

» Inserting the keys in the order AX CS E RH into an initially empty BST
gives a worst-case tree where every node has one null link (one child),
except one at the bottom that has two null links (it's a leaf). Give five other
orderings of these keys that produce worst-case trees.

» HCSAERX

» HCAESRX

» HCEASRX

» HSRXCAE

» HSXRCAE

39

