Lecture 18: Dictionaries and Binary Search Trees

- Dictionaries
- Binary Search Trees
Dictionaries

- Also known as: symbol tables, maps, indices, associative arrays.

- Key-value pair abstractions that support two operations:
 - Insert a key-value pair.
 - Given a key, search for the corresponding value.

- Supported either with built-in or external libraries by the majority of programming languages.
Basic dictionary API

- **public class Dictionary <Key extends Comparable<Key>, Value>**
- **Dictionary()**: create an empty dictionary. By convention, values are not null.
- **void put(Key key, Value val)**: insert key-value pair.
 - Overwrites old value with new value if key already exists.
- **Value get(Key key)**: return value associated with key.
 - Returns null if key not present.
- **boolean contains(Key key)**: is there a value associated with key?
- **Iterable keys()**: all the keys in the dictionary.
- **void delete(Key key)**: delete key and associated value.
- **boolean isEmpty()**: is the dictionary empty?
- **int size()**: number of key-value pairs.
Ordered dictionaries

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>min() 09:00:00</td>
<td>Chicago</td>
</tr>
<tr>
<td>09:00:03</td>
<td>Phoenix</td>
</tr>
<tr>
<td>09:00:13</td>
<td>Houston</td>
</tr>
<tr>
<td>get(09:00:13) 09:00:59</td>
<td>Chicago</td>
</tr>
<tr>
<td>09:01:10</td>
<td>Houston</td>
</tr>
<tr>
<td>floor(09:05:00) 09:03:13</td>
<td>Chicago</td>
</tr>
<tr>
<td>09:10:11</td>
<td>Seattle</td>
</tr>
<tr>
<td>select(7) 09:10:25</td>
<td>Seattle</td>
</tr>
<tr>
<td>09:14:25</td>
<td>Phoenix</td>
</tr>
<tr>
<td>09:19:32</td>
<td>Chicago</td>
</tr>
<tr>
<td>09:19:46</td>
<td>Chicago</td>
</tr>
<tr>
<td>keys(09:15:00, 09:25:00) 09:21:05</td>
<td>Chicago</td>
</tr>
<tr>
<td>09:22:43</td>
<td>Seattle</td>
</tr>
<tr>
<td>09:22:54</td>
<td>Seattle</td>
</tr>
<tr>
<td>09:25:52</td>
<td>Chicago</td>
</tr>
<tr>
<td>ceiling(09:30:00) 09:35:21</td>
<td>Chicago</td>
</tr>
<tr>
<td>09:36:14</td>
<td>Seattle</td>
</tr>
<tr>
<td>max() 09:37:44</td>
<td>Phoenix</td>
</tr>
</tbody>
</table>

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7
Ordered dictionary API

- **Key min()**: smallest key.
- **Key max()**: largest key.
- **Key floor(Key key)**: largest key less than or equal to given key.
- **Key ceiling(Key key)**: smallest key greater than or equal to given key.
- **int rank(Key key)**: number of keys less than that given key.
- **Key select(int k)**: key with rank k.
- **Iterable keys()**: all keys in dictionary in sorted order.
- **Iterable keys(int lo, int hi)**: keys in $[lo, \ldots, hi]$ in sorted order.
Printed dictionaries are all around us

- **Dictionary**: key = word, value = definition.
- **Encyclopedia**: key = term, value = article.
- **Phonebook**: key = name, value = phone number.
- **Math table**: key = math functions and input, value = function output.

- **Unsupported operations**:
 - Add a new key and associated value.
 - Remove a given key and associated value.
 - Change value associated with a given key.
Lecture 18: Dictionaries and Binary Search Trees

- Dictionaries
- Binary search Trees
Definitions

- Binary Search Tree: A binary tree in symmetric order.
- Symmetric order: Each node has a key, and every node’s key is:
 - Larger than all keys in its left subtree.
 - Smaller than all keys in its right subtree.
- Our textbook uses BSTs to implement dictionaries, therefore each node holds a key-value pair. Other implementations hold only a key.
Differences between heaps and BSTs

<table>
<thead>
<tr>
<th></th>
<th>Heap</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used to implement</td>
<td>Priority queues</td>
<td>Dictionaries</td>
</tr>
<tr>
<td>Supported operations</td>
<td>Insert, delete max</td>
<td>insert, search, delete, ordered operations</td>
</tr>
<tr>
<td>What is inserted</td>
<td>Keys</td>
<td>Key-value pairs</td>
</tr>
<tr>
<td>Underlying data structure</td>
<td>(Resizing) array</td>
<td>Linked nodes</td>
</tr>
<tr>
<td>Tree shape</td>
<td>Complete binary tree</td>
<td>Depends on data</td>
</tr>
<tr>
<td>Ordering of keys</td>
<td>Heap-ordered</td>
<td>Symmetrically-ordered</td>
</tr>
<tr>
<td>Duplicate keys allowed?</td>
<td>Yes</td>
<td>No*</td>
</tr>
</tbody>
</table>

*: when BSTs used to implement dictionaries.
BST representation of dictionaries

- We will use an inner class `Node` that is composed by:
 - A Key that is comparable and a Value
 - A reference to the root nodes of the left (smaller keys) and right (larger keys) subtrees.
 - Potentially, the total number of nodes in the subtree that has root this node.
- A BST has a reference to a `Node root`.
BST and Node implementation

```java
public class BST<Key extends Comparable<Key>, Value> {
    private Node root;   // root of BST

    private class Node {
        private Key key;   // sorted by key
        private Value val; // associated value
        private Node left, right; // roots of left and right subtrees
        private int size;   // #nodes in subtree rooted at this

        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }
}
```
Search for a key

- If less than key in node go to left subtree.
- If greater than key in node go to right subtree.
- If given key and key at examined node are equal, search hit.
- Return value corresponding to given key, or `null` if no such key.
 - In other implementations, you return the last node you reached.
- Number of compares is equal to the depth of the node + 1.
Search example
Search - iterative implementation

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            x = x.left;
        else if (cmp > 0)
            x = x.right;
        else if (cmp == 0)
            return x.val;
    }
    return null;
}
```
Search - recursive implementation

```java
\* public Value get(Key key) {
    return get(root, key);
}\n
\* private Value get(Node x, Key key) {
    if (x == null)
        return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        return get(x.left, key);
    else if (cmp > 0)
        return get(x.right, key);
    else
        return x.val;
}\n```
Practice Time - Problem 1 Worksheet #18

- Search for the keys 4 and 9 in the following BST:
Insert

- If less than key in node go left.
- If greater than key in node go right.
- If null, insert.
- If already exists, update value.
- Number of compares is equal to the depth of the node + 1.
Insert example

Insertion into a BST

1. Inserting L
2. Search for L ends at this null link
3. Create new node
4. Reset links and increment counts on the way up
Insert

- **public** void put(Key key, Value val) {
  root = put(root, key, val);
}

  **private** Node put(Node x, Key key, Value val) {
  if (x == null)
    return new Node(key, val, 1);
  int cmp = key.compareTo(x.key);
  if (cmp < 0)
    x.left = put(x.left, key, val);
  else if (cmp > 0)
    x.right = put(x.right, key, val);
  else
    x.val = val;
  x.size = 1 + size(x.left) + size(x.right);
  return x;
}
Practice Time - Problem 2 Worksheet #18

- Add the keys 4 and then the key 9 in the following BST:
3.2 Binary Search Tree Demo
Tree shape

- The same set of keys can result to different BSTs based on their order of insertion.
- Number of compares for search/insert is equal to depth of node + 1.
BSTs mathematical analysis

- If $n$ distinct keys are inserted into a BST in random order, the expected number of compares of search/insert is $O(\log n)$.
  - If $n$ distinct keys are inserted into a BST in random order, the expected height of tree is $O(\log n)$. [Reed, 2003].
- Worst case height is $n$ but highly unlikely.
  - Keys would have to come (reversely) sorted!
- All ordered operations in a dictionary implemented with a BST depend on the height of the BST.
Hibbard deletion: Delete node which is a leaf

- Simply delete node.

- Example: delete 52 locates a node which is a leaf and removes it.
Hibbard deletion: Delete node with one child

- Delete node and replace it with its child.
- Example: delete 70 locates a node which has one child and replaces it with the child.
Hibbard deletion: Delete node with two children

- Delete node and replace it with successor (node with smallest of the larger keys). Move successor’s child (if any) where successor was.

- Example: delete 50 locates a node which has two children. Successor is 51.
public void delete(Key key) {
    root = delete(root, key);
}

private Node delete(Node x, Key key) {
    if (x == null) return null;

    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        x.left = delete(x.left, key);
    else if (cmp > 0)
        x.right = delete(x.right, key);
    else {
        if (x.right == null)
            return x.left;
        if (x.left == null)
            return x.right;
        Node t = x; //replace with successor
        x = min(t.right);
        x.right = deleteMin(t.right);
        x.left = t.left;
    }
    x.size = size(x.left) + size(x.right) + 1;
    return x;
}
Practice Time - Problem 3 Worksheet #18

- Delete the node 21 following Hibbard’s deletion
Answer

- Delete the node 21 following Hibbard’s deletion
Hibbard’s deletion

- Unsatisfactory solution. If we were to perform many insertions and deletions the BST ends up being not symmetric and skewed to the left.
  - Extremely complicated analysis, but average cost of deletion ends up being $\sqrt{n}$. Let’s simplify things by saying it stays $O(\log n)$.
  - No one has proven that alternating between the predecessor and successor will fix this.
- Hibbard devised the algorithm in 1962. Still no algorithm for efficient deletion in Binary Search Trees!
- Overall, BSTs can have $O(n)$ worst-case for search, insert, and delete. We want to do better (see future lectures).
Lecture 18: Dictionaries and Binary Search Trees

- Dictionaries
- Binary Search Trees
Readings:

- Recommended Textbook: Chapters 3.2 (Pages 396-414)
- Website:
  - https://algs4.cs.princeton.edu/32bst/
- Visualization:
  - https://visualgo.net/en/bst

Worksheet

- Lecture 18 worksheet
Problem 1

- Draw the BST that results when you insert the keys 5, 1, 19, 25, 17, 5, 19, 20, 9, 15, 14 in that order.
Problem 2

- Inserting the keys in the order A X C S E R H into an initially empty BST gives a worst-case tree where every node has one null link (one child), except one at the bottom that has two null links (it's a leaf). Give five other orderings of these keys that produce worst-case trees.
Problem 3

- Give five orderings of the keys A X C S E R H that when inserted into an initially empty binary search tree, produce best-case trees.
ANSWER 1

- Draw the BST that results when you insert the keys 5, 1, 19, 25, 17, 5, 19, 20, 9, 15, 14 in that order.

- -2 indicates that this node has been updated to the second value associated with that key.
Answer 2

- Inserting the keys in the order A X C S E R H into an initially empty BST gives a worst-case tree where every node has one null link (one child), except one at the bottom that has two null links (it's a leaf). Give five other orderings of these keys that produce worst-case trees.

- A C E H R S X
- X S R H E C A
- X A S C R E H
- X A S C R H E
- A X C S E H R
ANSWER 3

- Inserting the keys in the order A X C S E R H into an initially empty BST gives a worst-case tree where every node has one null link (one child), except one at the bottom that has two null links (it's a leaf). Give five other orderings of these keys that produce worst-case trees.

- H C S A E R X
- H C A E S R X
- H C E A S R X
- H C E A S R X
- H S R X C A E
- H S X R C A E