
CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

13: Insertion Sort

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Alexandra Papoutsaki 
she/her/hers

Today we'll continue with our second sorting algorithm, insertion sort.

TODAY’S LECTURE IN A NUTSHELL

Lecture 13: Insertion Sort

▸ Insertion sort

2

Some slides adopted from Algorithms 4th Edition or COS226

If I were to hand you a few playing cards and ask you to sort them, chances are you would come up on your own with insertion sort.

INSERTION SORT

Insertion sort

▸ Keep a partially sorted subarray on the left and an unsorted subarray on
the right.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray and insert it
there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

Insertion sort's basic idea is that we have a partially sorted subarray on the left (think of it as your left hand) and an unsorted subarray on the right (your right hand). We
get to repeat the following steps: Examine the next element in the unsorted subarray.

Find the location it belongs within the sorted subarray and insert it there.

Move subarray boundaries one element to the right.

To help with the illustration of how this algorithm works, I have an array of eight numbers. we start with everything marked as yellow since the entire array is unsorted. as
we run the algorithm, the left side will become progressively greener since we will be partially sorting it.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

We start with the first element in the array (and unsorted subarray).

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

We look for where it fits within the sorted subarray and insert it there. Since there is nothing really in the sorted subarray, we leave it as is.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

And mark the first index as partially sorted.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

Let's examine the second element.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

Does it go before or after 3? It stays as is, after it.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

Now 3 and 44 are partially sorted.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

Third element is 38.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

We compare it with 44 and it's smaller/

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

So we swap 38 and 44.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

We compare 38 with 3 but it is larger so it stays there.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 44 5 47 1 36 26

INSERTION SORT

Insertion sort

we now have 3, 38, and 44 partially sorted.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

Fourth element is 5.

3 38 44 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

We compare it with 44...

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 5 44 47 1 36 26

INSERTION SORT

Insertion sort

and swap them.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 5 44 47 1 36 26

INSERTION SORT

Insertion sort

Compare it with 38...

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 5 38 44 47 1 36 26

INSERTION SORT

Insertion sort

and swap them.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 5 38 44 47 1 36 26

INSERTION SORT

Insertion sort

Compare it with 3 and it stays there.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

Now 3, 5, 38, 44, are at their final place... The rest of the steps are the same until we move 26 to its final position.

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 1 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 1 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 1 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 1 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 1 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 1 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 1 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 1 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 36 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 36 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 36 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 36 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 26 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 26 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 26 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 26 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

We now have a fully sorted array!

https://algs4.cs.princeton.edu/lectures/demo/21DemoInsertionSort.mov

This is a demo of insertion sorts with playing cards.

https://algs4.cs.princeton.edu/lectures/demo/21DemoInsertionSort.mov

INSERTION SORT

In case you didn’t get this…

‣ https://www.youtube.com/watch?v=ROalU379l3U

And here is a funny video with folk dancers that demonstrate insertion sort.

https://www.youtube.com/watch?v=ROalU379l3U

INSERTION SORT

PRACTICE TIME - Implement insertion sort

public static <E extends Comparable<E>> void insertionSort(E[] a) {

 }

Take a moment and think about what we did so far. How would you implement this method so that you would sort the array a of Comparable items of type E? Remember,
generic methods are methods that introduce their own type parameters. This is similar to declaring a generic type, but the type parameter's scope is limited to the
method where it is declared. Static and non-static generic methods are allowed. The syntax for a generic method includes a list of type parameters, inside angle
brackets, which appears before the method's return type. For static generic methods, the type parameter section must appear before the method's return type.

INSERTION SORT

Insertion sort

public static <E extends Comparable<E>> void insertionSort(E[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(a[j].compareTo(a[j-1])<0){
 E temp = a[j];  
 a[j]=a[j-1];  
 a[j-1]=temp;
 }
 else{
 break;
 }
 }
 }
 }
▸ Invariants: At the end of each iteration i:

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i]

Presumably you ended with something like this.

At the end of each iteration, the array a is sorted in ascending order for the first i+1 elements a[0…i]

INSERTION SORT

Insertion sort: mathematical analysis for worst-case

public static <E extends Comparable<E>> void insertionSort(E[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(a[j].compareTo(a[j-1])<0){
 E temp = a[j];  
 a[j]=a[j-1];  
 a[j-1]=temp;
 }
 else{
 break;
 }
 }
 }
 }
▸ Comparisons: ~ , that is .

▸ Exchanges: ~ , that is .

▸ Worst-case running time is quadratic.

▸ In-place, requires almost no additional memory.

▸ Stable

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

How many comparisons do we make? The simplest worst case input is an array sorted in reverse order

In the worst case:

For i=0 make 0 comparisons

For i = 1 make 1 comparisons

…

For i=n-1 make n-1 comparisons

Total: 1+2+…+n-2+n-1 = n(n-1)/2~O(n^2)

What about exchanges? In the worst case (let's say a reversely ordered array), we would need to again make ~O(n^2) exchanges.

Insertion sort is in place as it requires almost no additional memory except for a handful of temporary variables.

And the good news is that it is stable.

INSERTION SORT

Insertion sort: average and best case

public static <E extends Comparable<E>> void insertionSort(E[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(a[j].compareTo(a[j-1])<0){
 E temp = a[j];  
 a[j]=a[j-1];  
 a[j-1]=temp;
 }
 else{
 break;
 }
 }
 }
 }
▸ Best case: comparisons and exchanges for an already sorted array.

▸ Average case: quadratic for both comparisons and exchanges ~ when sorting a randomly ordered
array.

n − 1 0

n2/4

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

In the best case:

for each external loop, we only make one comparison, we get in the else statement, and break the inner loop.

That would mean at best case we make n-1 comparisons. Such a scenario would happen if we were given an already sorted array.

In terms of exchanges, for best case, since none of the if statements would be satisfied, we would have 0 exchanges.

We won't do the proof for average case, but it's quadratic both for comparisons and exchanges when sorting a randomly ordered array.

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

INSERTION SORT

Practice Time - Worksheet

‣ Using insertion sort, sort the array with elements
[12,10,16,11,9,7].

‣ Visualize your work for every iteration of the algorithm.

Let's practice!

INSERTION SORT

Answer

 https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

Did you get this answer?

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort
https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

TODAY’S LECTURE IN A NUTSHELL

Lecture 13: Insertion Sort

▸ Insertion sort

66

To summarize, we saw insertion sort an algorithm that like selection sort has an unsorted and sorted subarray. But here, the sorted array elements are not in their final
position until we run the full algorithm. Unlike selection sort, the running time of insertion sort depends on the initial order of the items in the input. For example, if the
array is large and its entries are already in or nearly in order, then insertion sort, is MUCH faster than if the entries are randomly ordered or in reverse order. Insertion sort
works well for certain types of nonrandom arrays that often arise in practice, even if they are huge. If the array is in order or the keys are all equal, then the total running
time is linear. In general, iteration sort works very well for partially sorted arrays, e.g., :

an array where each entry is not far from its final position, or a small array appended to a large sorted array, or an array with only a few entries that are not in place. That
makes insertion sort not only excellent for partially sorted arrays but also a fine method for tiny arrays, which will come handy in intermediate stages of advanced sorting
algorithms like merge sort which we'll see soon.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Recommended Textbook:

▸ Chapter 2.1 (pages 244–262)

▸ Chapter 2.5 (Pages 338-339)

▸ Recommended Textbook Website:

▸ Elementary sorts: https://algs4.cs.princeton.edu/21elementary/

67

Worksheet
▸ Lecture 13 worksheet

Code
▸ Lecture 13 code

https://algs4.cs.princeton.edu/21elementary/
https://cs.pomona.edu/classes/cs62/worksheets/Lecture13_worksheet.pdf
https://github.com/pomonacs622024sp/code/tree/main/Lecture13

‣

▸ Show all the steps of how insertion sort would sort [E, A, S, Y, Q, U, E, S, T, I, O, N] in
the style of the following trace which visualizes the array contents just after each
insertion.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 1 - Recommended textbook 2.1.4

68

‣ Describe an array of n elements where the if statement in the
inner loop is always false and the loop terminates. Now
describe an array of n elements where the if statement is
always satisfied.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 2

69

‣ Which method runs faster for an array with all keys identical,
selection sort or insertion sort?

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 3 - Recommended textbook 2.1.6

70

‣ Which method runs faster for an array in reverse order,
selection sort or insertion sort?

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 4 - Recommended textbook 2.1.7

71

‣ Suppose that we use insertion sort on a randomly ordered
array where items have only one of three values. Is the running
time linear, quadratic, or something in between?

ASSIGNED READINGS AND PRACTICE PROBLEMS

Practice Problem 5 - Recommended textbook 2.1.8

72

‣

▸ Show all the steps of how insertion sort would sort [E, A, S, Y, Q, U, E, S, T, I, O, N] in
the style of the following trace which visualizes the array contents just after each
insertion.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 1

73

‣ Describe an array of n elements where the if statement in the
inner loop is always false and the loop terminates. Now
describe an array of n elements where the if statement is
always satisfied.

‣ if statement always false when the array is already sorted, e.g.,
[1, 2, 3, 4]

‣ if statement always true when the array is in reverse order, e.g.,
[4, 3, 2, 1].

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 2

74

‣ Which method runs faster for an array with all keys identical,
selection sort or insertion sort?

‣ Insertion sort is faster because it will only make one
comparison per element (i.e., is linear) and will not need to
exchange any elements. Instead, selection sort will still run in
quadratic time.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 3

75

‣ Which method runs faster for an array in reverse order,
selection sort or insertion sort?

‣ Selection sort. Big O says both are quadratic, but selection sort
needs only exchanges, while insertion sort exchangesn n2/2

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 4

76

‣ Suppose that we use insertion sort on a randomly ordered
array where items have only one of three values. Is the running
time linear, quadratic, or something in between?

‣ Quadratic. Insertion sort's running time is linear when the array
is already sorted or all elements are equal. With three possible
values the running time is quadratic.

ASSIGNED READINGS AND PRACTICE PROBLEMS

ANSWER 5

77

