
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

9: Linked Lists Catchup + Stacks and Queues

BASIC DATA STRUCTURES

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Tom Yeh
he/him/his

TEXT

ArrayList Review

RUNNING TIME OF ARRAYLIST OPERATIONS

Worst-case performance of add() is O(n)

‣Cost model: 1 for insertion, for copying items to a new array.
‣Worst-case: If ArrayList is full, add() will need to call resize to
create a new array of double the size, copy all items, insert new one.
‣Total cost: .

‣Realistically, this won’t be happening often and worst-case analysis
can be too strict. We will use amortized time analysis instead.

n n

n + 1 = O(n)

3

RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis

‣Amortized cost per operation: for a sequence of operations, it is
the total cost of operations divided by .
‣Simplest form of amortized analysis called aggregate method.
More complicated methods exist, such as accounting (banking)
and potential (physicist’s).

n
n

4

RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis for add() operationsn

‣ As the ArrayList increases, doubling happens half as often but costs twice as much.
‣ total cost)= (“cost of insertions”) + (“cost of copying”)
‣ (“cost of insertions”) .
‣ (“cost of copying”) = .

‣ total cost) , therefore amortized cost is , but “lumpy”.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0
Copying
Cost 16

1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1
Total
Cost 17

O(∑ ∑
∑ = n

∑ 1 + 2 + 22 + . . .2⌊log 2n⌋ ≤ 2n

O(≤ 3n ≤
3n
n

= 3 = O(1)

5

TEXT

Quiz

SINGLY LINKED LISTS

Insert item at a specified index

7

// Inserts the specified item at the specified index.
public void add(int index, Item item) {

 // check that index is within range
rangeCheck(index);

 // if index is 0, then call one-argument add
if (index == 0) {

add(item);
 // else

} else {
 // make two pointers, previous and finger. Point previous to null and finger to
head

Node previous = null;
Node finger = first;
// search for index-th position by pointing previous to finger and advancing finger
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
// create new node to insert in correct position. Set its pointers and contents
Node current = new Node();
current.next = finger;
current.item = item;
// make previous point to newly created node.
previous.next = current;
// increase number of nodes
n++;

}
}

ROCKS CS062?!

SINGLY LINKED LISTS

Retrieve and remove head

8

/**
 * Retrieves and removes the head of the singly linked list.
 *
 * @return the head of the singly linked list.
 */
public Item remove() {  

 // Make a temporary pointer to head
Node temp = first;
// Move head one to the right
first = first.next;
// Decrease number of nodes
n--;
// Return item held in the temporary pointer
return temp.item;

}

Head/Beginning/Front/First

CS062ROCKS?

SINGLY LINKED LISTS

Retrieve and remove element from a specific index

9

//Retrieves and removes the item at the specified index.
public Item remove(int index) {

 // check that index is within range
rangeCheck(index);

 // if index is 0, then call remove
if (index == 0) {

return remove();
 // else

} else {
 // make two pointers, previous and finger. Point previous to null and finger to head

Node previous = null;
Node finger = first;
// search for index-th position by pointing previous to finger and advancing finger
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
// make previous point to finger’s next
previous.next = finger.next;
// reduce number of items
n--;
// return finger’s item
return finger.item;

}

}

Head/Beginning/Front/First

CS062?

RUNNING TIME OF LINKED LIST OPERATIONS

add() in singly linked lists is for worst caseO(1)

public void add(Item item) {
// Save the old node
Node oldfirst = first;

// Make a new node and assign it to head. Fix pointers.
first = new Node();
first.item = item;
first.next = oldfirst;

n++; // increase number of nodes in singly linked list.
}

10

RUNNING TIME OF LINKED LIST OPERATIONS

get() in singly linked lists is for worst caseO(n)

 public Item get(int index) {
rangeCheck(index);

Node finger = first;
// search for index-th element or end of list
while (index > 0) {

finger = finger.next;
index--;

}
return finger.item;

}

11

RUNNING TIME OF LINKED LIST OPERATIONS

add(int index, Item item) in singly linked lists is for worst caseO(n)
public void add(int index, Item item) { // What is the worst case?

rangeCheck(index);

if (index == 0) {
add(item);

} else {

Node previous = null;
Node finger = first;
// search for index-th position
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
// create new value to insert in correct position.
Node current = new Node();
current.next = finger;
current.item = item;
// make previous value point to new value.
previous.next = current;

n++;
}

}

12

RUNNING TIME OF LINKED LIST OPERATIONS

remove() in singly linked lists is for worst caseO(1)

public Item remove() {
Node temp = first;
// Fix pointers.
first = first.next;

n--;

return temp.item;
}

13

RUNNING TIME OF LINKED LIST OPERATIONS

remove(int index) in singly linked lists is for worst caseO(n)

public Item remove(int index) {
rangeCheck(index);

if (index == 0) {
return remove();

} else {
Node previous = null;
Node finger = first;
// search for value indexed, keep track of previous
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
previous.next = finger.next;

n--;
// finger's value is old value, return it
return finger.item;

}

}

14

ASSIGNED READINGS AND PRACTICE PROBLEMS - SINGLY LINKED LISTS

Readings:

▸ Textbook:

▸ Chapter 1.3 (Page 142–146)

▸ Textbook Website:

▸ Linked Lists: https://algs4.cs.princeton.edu/13stacks/

15

Practice Problems:

▸ 1.3.18–1.3.27

TEXT

item1 item4item2 item5

DOUBLY LINKED LISTS

Recursive Definition of Doubly Linked Lists

17

‣ A doubly linked list is either empty (null) or a node having a
reference to a doubly linked list.

‣ Node: is a data type that holds any kind of data and two
references to the previous and next node.

item

Node

Head/Beginning/Front/First Tail/End/Back/Last

Item3

DOUBLY LINKED LISTS

Node

18

private class Node {
Item item;
Node next;
Node prev;

}

Node

item

DOUBLY LINKED LISTS

Instance variables and inner class

19

public class DoublyLinkedList<Item> implements Iterable<Item> {
private Node first; // head of the doubly linked list
private Node last; // tail of the doubly linked list
private int n; // number of nodes in the doubly linked list

/**
 * This nested class defines the nodes in the doubly linked list with a value
 * and pointers to the previous and next node they are connected.
 */
private class Node {

Item item;
Node next;
Node prev;

}

RUNNING TIME OF LINKED LIST OPERATIONS

addFirst() in doubly linked lists is for worst caseO(1)

public void addFirst(Item item) {
// Save the old node
Node oldfirst = first;

// Make a new node and assign it to head. Fix pointers.
first = new Node();
first.item = item;
first.next = oldfirst;
first.prev = null;

// if first node to be added, adjust tail to it.
if (last == null)

last = first;
else

oldfirst.prev = first;

n++; // increase number of nodes in doubly linked list.
}

20

dll.addFirst(“CS062”)

n=1
CS062

Head/Beginning/Front/First Tail/End/Back/Last

RUNNING TIME OF LINKED LIST OPERATIONS

addLast() in doubly linked lists is for worst caseO(1)

public void addLast(Item item) {
// Save the old node
Node oldlast = last;

// Make a new node and assign it to tail. Fix pointers.
last = new Node();
last.item = item;
last.next = null;
last.prev = oldlast;

// if first node to be added, adjust head to it.
if (first == null)

first = last;
else

oldlast.next = last;

n++;
}

21

dll.addLast(“!”)

n=3

ROCKS

Head/Beginning/Front/First

CS062 !ROCKS

Tail/End/Back/Last

RUNNING TIME OF LINKED LIST OPERATIONS

add(int index, Item item) in doubly linked lists is for worst caseO(n)

public void add(int index, Item item) {
rangeCheck(index);

if (index == 0) {
addFirst(item);

} else if (index == size()) {
addLast(item);

} else {

Node previous = null;
Node finger = first;
// search for index-th position
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
// create new value to insert in correct position
Node current = new Node();
current.item = item;
current.next = finger;
current.prev = previous;
previous.next = current;
finger.prev = current;

n++;
}

}

22

?

Head/Beginning/Front/First

CS062 !

Tail/End/Back/Last

ROCKS

RUNNING TIME OF LINKED LIST OPERATIONS

removeFirst() in doubly linked lists is for worst caseO(1)

public Item removeFirst() {
Node oldFirst = first;
// Fix pointers.
first = first.next;
// at least 1 nodes left.
if (first != null) {

first.prev = null;
} else {

last = null; // remove final node.
}
oldFirst.next = null;

n--;

return oldFirst.item;
}

23

?

Head/Beginning/Front/First

CS062 !

Tail/End/Back/Last

RUNNING TIME OF LINKED LIST OPERATIONS

removeLast() in doubly linked lists is for worst caseO(1)

public Item removeLast() {

Node temp = last;
last = last.prev;

// if there was only one node in the doubly linked list.
if (last == null) {

first = null;
} else {

last.next = null;
}
n--;
return temp.item;

}

24

?

Head/Beginning/Front/First

CS062

Tail/End/Back/Last

dll.removeLast()

n=2

RUNNING TIME OF LINKED LIST OPERATIONS

remove(int index) in doubly linked lists is for worst caseO(n)

public Item remove(int index) {
rangeCheck(index);

if (index == 0) {
return removeFirst();

} else if (index == size() - 1) {
return removeLast();

} else {
Node previous = null;
Node finger = first;
// search for value indexed, keep track of previous
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
previous.next = finger.next;
finger.next.prev = previous;

n--;
// finger's value is old value, return it
return finger.item;

}

}

25

?

Head/Beginning/Front/First

Tail/End/Back/Last

TEXT

JAVA COLLECTIONS

The Java Collections Framework

27

 https://en.wikipedia.org/wiki/Java_collections_framework

JAVA COLLECTIONS

LinkedList in Java Collections

28

 https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

▸ Doubly linked list implementation of the List and Deque
(stay tuned) interfaces.

java.util.LinkedList;

public class LinkedList<E> extends
AbstractSequentialList<E> implements List<E>, Deque<E>

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

▸ Linked Lists: https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

▸ Textbook:

▸ Chapter 1.3 (Page 142–146)

▸ Textbook Website:

▸ Linked Lists: https://algs4.cs.princeton.edu/13stacks/

29

Practice Problems:

▸ 1.3.18–1.3.27 (approach them as doubly linked lists).

TEXT

TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

31

Some slides adopted from Algorithms 4th Edition and Oracle tutorials

STACKS

Stacks

32

‣ Dynamic linear data structures.
‣ Items are inserted and removed following the LIFO paradigm.
‣ LIFO: Last In, First Out.
‣ Similar to lists, there is a sequential nature to the data.
‣ Remove the most recent item.

‣ Metaphor of pancakes or cafeteria plate dispenser.
‣ Want a pancake/plate? Pop the top pancake/plate.
‣ Add a pancake/plate? Push a pancake/plate to make it the new top.
‣ Want to see the top pancake/plate? Peek.
‣ We want to make push and pop as time efficient as possible

STACKS

Example of stack operations

33

push To be or not to - be - - that - - - is

pop to be not that or be

To

be

To
be
or

To
be
or
not

To
be
or
not
to

To
be
or
not

To
be
or
not

To
be
or
not

To
be
or

To
be
or
that

To
be
or

To
be

To To
is

To
be

push to top pop from top

Out
First
In
Last

ARRAYLIST - REVIEW

add(Item item):Appends the item to the end of the ArrayList

34

CS062 ROCKS

0 1

Front End/Rear

!

2 3

al.add(“!”);

CS062 THROWS

Front End/Rear

al.remove();

remove():Retrieves and removes item from the end of ArrayList

0 1 2 3

STACKS

Implementing stacks with ArrayLists

35

‣ Where should the top go to make push and pop as efficient as possible?
‣ The end/rear represents the top of the stack.
‣ To push an item add(Item item).
‣ Adds at the end. Average .

‣ To pop an item remove().
‣ Removes and returns the item from the end. Average .

‣ To peek get(size()-1).
‣ Retrieves the last item. .

‣ If the front/beginning were to represent the top of the stack, then:
‣ Push, pop would be ? And peek would be ?
‣ and .

O(1)

O(1)

O(1)

O(n) O(1)

CS062 ROCKS

0 1

Front End/Rear

!

2 3

STACKS

Implementing stacks with singly linked lists

36

‣ Where should the top go to make push and pop as efficient as possible?
‣ The front represents the top of the stack.
‣ To push an item add(Item item).
‣ Adds at the head. .

‣ To pop an item remove().
‣ Removes and retrieves from the head. .

‣ To peek get(0).
‣ Retrieves the head. .

‣ If the end were to represent the top of the stack, then:
‣ Push, pop, peek would all be ?
‣ .

O(1)

O(1)

O(1)

O(n)

Head/Beginning/Front/First

CS062ROCKS?

STACKS

Implementing stacks with doubly linked lists

37

‣ Where should the top go to make push and pop as efficient as possible?
‣ The front represents the top of the stack.
‣ To push an item addFirst(Item item).
‣ Adds at the head. .

‣ To pop an item removeFirst().
‣ Removes and retrieves from the head. .

‣ To peek head.item.
‣ Retrieves the head. .

‣ Unnecessary memory overhead with extra pointers.
‣ If the end were to re[resent the top of the stack, we’d need to use
addLast(Item item), removeLast(), and tail.item to have
complexity.

O(1)

O(1)

O(1)

O(1)

?

Head/Beginning/Front/First

CS062 !

Tail/End/Back/Last

STACKS

Textbook implementation of stacks

38

‣ ResizingArrayStack.java: for implementation of stacks with
ArrayLists.

‣ LinkedStack.java: for implementation of stacks with singly
linked lists.

TEXT

TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

40

QUEUES

Queues

41

‣ Dynamic linear data structures.
‣ Items are inserted and removed following the FIFO paradigm.
‣ FIFO: First In, First Out.
‣ Similar to lists, there is a sequential nature to the data.
‣ Remove the least recent item.

‣ Metaphor of a line of people waiting to buy tickets.
‣ Just arrived? Enqueue person to the end of line.
‣ First to arrive? Dequeue person at the top of line.
‣ We want to make enqueue and dequeue as time efficient as

possible.

QUEUES

Example of queue operations

42

enqueue To be or not to - be - - that - - - is

dequeue To be or not to be

To

be

or
be
To

not
or
be
To

to be
to
not
or

be
to
not

that
be
that that is

that
be
To

dequeue from beginning

enqueue at end

Out
First
In

First

not
or
be
To

not
or
be

to be
to
not
or

be
to
not

be
to

that

QUEUES

Implementing queue with ArrayLists

43

‣ Where should we enqueue and dequeue items?
‣ To enqueue an item add() at the end of arrayList.
‣ Average .

‣ To dequeue an item remove(0).
‣ .

‣ What if we add at the beginning and remove from end?
‣ Now dequeue is cheap () but enqueue becomes

expensive ().

O(1)

O(n)

O(1)
O(n)

CS062 THROWS

0 1

Front End/Rear

ROCKS !

2 3

QUEUES

Implementing queue with singly linked list

44

‣ Where should we enqueue and dequeue items?
‣ To enqueue an item add() at the head of SLL
‣ ().

‣ To dequeue an item remove(size()-1)
‣ ().

‣ What if we add at the end and remove from Head?
‣ Now dequeue is cheap () but enqueue becomes expensive

().
‣ if we have a tail pointer.
‣ Simple modification in code, big gains!
‣ Version that textbook follows.

O(1)

O(n)

O(1)
O(n)

O(1)

Head/Beginning/Front/First

CS062ROCKS?

QUEUES

Implementing queue with doubly linked list

45

‣ Where should we enqueue and dequeue items?
‣ To enqueue an item addFirst() at the head of DLL
‣ ().

‣ To dequeue an item removeLast()
‣ ().

‣ What if we add at the beginning and remove from end?
‣ Both are !

O(1)

O(1)

O(1)

?

Head/Beginning/Front/First

CS062 !

Tail/End/Back/Last

QUEUES

Textbook implementation of queues

46

‣ ResizingArrayQueue.java: for implementation of queues with
ArrayLists.

‣ LinkedQueue.java: for implementation of queues with singly
linked lists.

TEXT

TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

48

APPLICATIONS

Stack applications

49

‣ Java Virtual Machine.
‣ Basic mechanisms in compilers, interpreters (see CS101).
‣ Back button in browser.
‣ Undo in word processor.
‣ Infix expression evaluation (Dijskstra’s algorithm with two

stacks).
‣ Postfix expression evaluation.

APPLICATIONS

Infix expression evaluation example

50

APPLICATIONS

Postfix expression evaluation example

51

Example: (52 - ((5 + 7) * 4) ⇒ 52 5 7 + 4 * -

7
→ → →

5 5

52 push(52) 52 push(5) 52 push(7)

v1=pop()=7 4 v1=pop()=4

12 v2=pop()=5 → 12 → 48 v2=pop()=12

52 push(v2+v1)=push(12) 52 push(4) 52 push(v2*v1)=48

 v1=pop()=48
 v2=pop()=52 → peek()=4
 4 push(v2-v1)=4

APPLICATIONS

Queue applications

52

‣ Spotify playlist.
‣ Data buffers (netflix, Hulu, etc.).
‣ Asynchronous data transfer (file I/O, sockets).
‣ Requests in shared resources (printers).
‣ Traffic analysis.
‣ Waiting times at calling center.

TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

53

JAVA COLLECTIONS

The Java Collections Framework

54

 https://en.wikipedia.org/wiki/Java_collections_framework

JAVA COLLECTIONS

Deque in Java Collections

55

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ Do not use Stack.

▸ Queue is an interface…

▸ It’s recommended to use Deque instead.

▸ Double-ended queue (can add and remove from either end).

java.util.Deque;

public interface Deque<E> extends Queue<E>
▸ You can choose between LinkedList and ArrayDeque

implementations.

▸Deque deque = new ArrayDeque(); //preferable

TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

56

ITERATORS

Iterator Interface

57

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ Interface that allows us to traverse a collection one element
at a time.

public interface Iterator<E> {
 //returns true if the iteration has more elements
 //that is if next() would return an element instead of throwing an exception
 boolean hasNext();

 //returns the next element in the iteration
 //post: advances the iterator to the next value
 E next();

 //removes the last element that was returned by next
 default void remove(); //optional, better avoid it altogether
}

ITERATORS

Iterator Example

58

List<String> myList = new ArrayList<String>();
//… operations on myList

Iterator listIterator = myList.iterator();

while(listIterator.hasNext()){
 String elt = listIterator.next();
 System.out.println(elt);
}

ITERATORS

Java8 introduced lambda expressions

59

‣ Iterator interface now contains a new method.

‣ default void forEachRemaining(Consumer<? super E> action)  

‣ Performs the given action for each remaining element until all elements have been
processed or the action throws an exception.

listIterator.forEachRemaining(System.out::println);

ITERATORS

Iterable Interface

60

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

▸ Interface that allows an object to be the target of a for-each loop:

for(String elt: myList){
 System.out.println(elt);
}

interface Iterable<E>{
 //returns an iterator over elements of type E
 Iterator<E> iterator();

 //Performs the given action for each element of the Iterable until all elements
have  
 //been processed or the action throws an exception.

 default void forEach(Consumer<? super E> action);

}
myList.forEach(elt-> {System.out.println(elt)});  
myList.forEach(System.out::println);

ITERATORS

How to make your data structures iterable?

1. Implement Iterable interface.

2. Make a private class that implements the Iterator
interface.

3. Override iterator() method to return an instance of
the private class.

ITERATORS

Example: making ArrayList iterable

public class ArrayList<Item> implements Iterable<Item> {
 //…

public Iterator<Item> iterator() {

return new ArrayListIterator();  
 }

private class ArrayListIterator implements Iterator<Item> {

private int i = 0;

public boolean hasNext() {
 return i < n;

}

public Item next() {

return a[i++];

}

public void remove() {
 throw new UnsupportedOperationException();

}

}

ITERATORS

Traversing ArrayList

‣ All valid ways to traverse ArrayList and print its elements one by one.

 for(String elt:a1) {
System.out.println(elt);

}

a1.forEach(System.out::println);
a1.forEach(elt->{System.out.println(elt);});

a1.iterator().forEachRemaining(System.out::println);
a1.iterator().forEachRemaining(elt->{System.out.println(elt);});

TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

64

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

▸ Deque: https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ Iterator: https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ Iterable: https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

▸ Textbook:

▸ Chapter 1.3 (Page 126–157)

▸ Website:

▸ Stacks and Queues: https://algs4.cs.princeton.edu/13stacks/

65

Practice Problems:

▸ 1.3.2–1.3.8, 1.3.32–1.3.33

