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TEXT

ArrayList Review



RUNNING TIME OF ARRAYLIST OPERATIONS

Worst-case performance of add() is O(n)

‣Cost model: 1 for insertion,  for copying  items to a new array. 
‣Worst-case: If ArrayList is full, add() will need to call resize to 
create a new array of double the size, copy all items, insert new one. 
‣Total cost:  . 

‣Realistically, this won’t be happening often and worst-case analysis 
can be too strict. We will use amortized time analysis instead.

n n

n + 1 = O(n)
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RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis

‣Amortized cost per operation: for a sequence of  operations, it is 
the total cost of operations divided by . 
‣Simplest form of amortized analysis called aggregate method. 
More complicated methods exist, such as accounting (banking) 
and potential (physicist’s).

n
n
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RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis for  add() operationsn

 

‣ As the ArrayList increases, doubling happens half as often but costs twice as much. 
‣  total cost)= (“cost of insertions”) + (“cost of copying”) 
‣ (“cost of insertions”) . 
‣ (“cost of copying”) = . 

‣  total cost) , therefore amortized cost is , but “lumpy”.
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Quiz



SINGLY LINKED LISTS

Insert item at a specified index
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// Inserts the specified item at the specified index.
public void add(int index, Item item) {

            // check that index is within range
rangeCheck(index);

            // if index is 0, then call one-argument add
if (index == 0) {

add(item);
            // else

} else {
                  // make two pointers, previous and finger. Point previous to null and finger to 
head

Node previous = null;
Node finger = first;
// search for index-th position by pointing previous to finger and advancing finger
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
// create new node to insert in correct position. Set its pointers and contents
Node current = new Node();
current.next = finger;
current.item = item;
// make previous point to newly created node.
previous.next = current;
// increase number of nodes
n++;

}
}

ROCKS CS062?!



SINGLY LINKED LISTS

Retrieve and remove head
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/**
 * Retrieves and removes the head of the singly linked list.
 * 
 * @return the head of the singly linked list.
 */
public Item remove() {  

 // Make a temporary pointer to head
Node temp = first;
// Move head one to the right
first = first.next;
// Decrease number of nodes
n--;
// Return item held in the temporary pointer
return temp.item;

}

Head/Beginning/Front/First

CS062ROCKS?



SINGLY LINKED LISTS

Retrieve and remove element from a specific index
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//Retrieves and removes the item at the specified index.
public Item remove(int index) {

           // check that index is within range
rangeCheck(index);

           // if index is 0, then call remove
if (index == 0) {

return remove();
           // else

} else {
           // make two pointers, previous and finger. Point previous to null and finger to head

Node previous = null;
Node finger = first;
// search for index-th position by pointing previous to finger and advancing finger
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
// make previous point to finger’s next
previous.next = finger.next;
// reduce number of items
n--;
// return finger’s item
return finger.item;

}

}

Head/Beginning/Front/First

CS062?



RUNNING TIME OF LINKED LIST OPERATIONS

add() in singly linked lists is  for worst caseO(1)

public void add(Item item) {
// Save the old node
Node oldfirst = first;

// Make a new node and assign it to head. Fix pointers.
first = new Node();
first.item = item;
first.next = oldfirst;

n++; // increase number of nodes in singly linked list.
}
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RUNNING TIME OF LINKED LIST OPERATIONS

get() in singly linked lists is  for worst caseO(n)

   public Item get(int index) {
rangeCheck(index);

Node finger = first;
// search for index-th element or end of list
while (index > 0) {

finger = finger.next;
index--;

}
return finger.item;

}
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RUNNING TIME OF LINKED LIST OPERATIONS

add(int index, Item item) in singly linked lists is  for worst caseO(n)
public void add(int index, Item item) { // What is the worst case?

rangeCheck(index);

if (index == 0) {
add(item);

} else {

Node previous = null;
Node finger = first;
// search for index-th position
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
// create new value to insert in correct position.
Node current = new Node();
current.next = finger;
current.item = item;
// make previous value point to new value.
previous.next = current;

n++;
}

}
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RUNNING TIME OF LINKED LIST OPERATIONS

remove() in singly linked lists is  for worst caseO(1)

public Item remove() {
Node temp = first;
// Fix pointers.
first = first.next;

n--;

return temp.item;
}
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RUNNING TIME OF LINKED LIST OPERATIONS

remove(int index) in singly linked lists is  for worst caseO(n)

public Item remove(int index) {
rangeCheck(index);

if (index == 0) {
return remove();

} else {
Node previous = null;
Node finger = first;
// search for value indexed, keep track of previous
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
previous.next = finger.next;

n--;
// finger's value is old value, return it
return finger.item;

}

}
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ASSIGNED READINGS AND PRACTICE PROBLEMS - SINGLY LINKED LISTS

Readings:

▸ Textbook: 

▸ Chapter 1.3 (Page 142–146) 

▸ Textbook Website: 

▸ Linked Lists: https://algs4.cs.princeton.edu/13stacks/

15

Practice Problems:

▸ 1.3.18–1.3.27



TEXT



item1 item4item2 item5

DOUBLY LINKED LISTS

Recursive Definition of Doubly Linked Lists

17

 

‣ A doubly linked list is either empty (null) or a node having a 
reference to a doubly linked list. 

‣ Node: is a data type that holds any kind of data and two 
references to the previous and next node. 

item

Node

Head/Beginning/Front/First Tail/End/Back/Last

Item3



DOUBLY LINKED LISTS

Node

18

  

private class Node {
Item item;
Node next;
Node prev;

}

Node

item



DOUBLY LINKED LISTS

Instance variables and inner class
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public class DoublyLinkedList<Item> implements Iterable<Item> {
private Node first; // head of the doubly linked list
private Node last; // tail of the doubly linked list
private int n; // number of nodes in the doubly linked list

/**
 * This nested class defines the nodes in the doubly linked list with a value
 * and pointers to the previous and next node they are connected.
 */
private class Node {

Item item;
Node next;
Node prev;

}



RUNNING TIME OF LINKED LIST OPERATIONS

addFirst() in doubly linked lists is  for worst caseO(1)

public void addFirst(Item item) {
// Save the old node
Node oldfirst = first;

// Make a new node and assign it to head. Fix pointers.
first = new Node();
first.item = item;
first.next = oldfirst;
first.prev = null;

// if first node to be added, adjust tail to it.
if (last == null)

last = first;
else

oldfirst.prev = first;

n++; // increase number of nodes in doubly linked list.
}
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dll.addFirst(“CS062”)

n=1
CS062

Head/Beginning/Front/First Tail/End/Back/Last



RUNNING TIME OF LINKED LIST OPERATIONS

addLast() in doubly linked lists is  for worst caseO(1)

public void addLast(Item item) {
// Save the old node
Node oldlast = last;

// Make a new node and assign it to tail. Fix pointers.
last = new Node();
last.item = item;
last.next = null;
last.prev = oldlast;

// if first node to be added, adjust head to it.
if (first == null)

first = last;
else

oldlast.next = last;

n++;
}
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dll.addLast(“!”)

n=3

ROCKS

Head/Beginning/Front/First

CS062 !ROCKS

Tail/End/Back/Last



RUNNING TIME OF LINKED LIST OPERATIONS

add(int index, Item item) in doubly linked lists is  for worst caseO(n)

public void add(int index, Item item) {
rangeCheck(index);

if (index == 0) {
addFirst(item);

} else if (index == size()) {
addLast(item);

} else {

Node previous = null;
Node finger = first;
// search for index-th position
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
// create new value to insert in correct position
Node current = new Node();
current.item = item;
current.next = finger;
current.prev = previous;
previous.next = current;
finger.prev = current;

n++;
}

}
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Head/Beginning/Front/First

CS062 !

Tail/End/Back/Last

ROCKS



RUNNING TIME OF LINKED LIST OPERATIONS

removeFirst() in doubly linked lists is  for worst caseO(1)

public Item removeFirst() {
Node oldFirst = first;
// Fix pointers.
first = first.next;
// at least 1 nodes left.
if (first != null) {

first.prev = null;
} else {

last = null; // remove final node.
}
oldFirst.next = null;

n--;

return oldFirst.item;
}
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Head/Beginning/Front/First

CS062 !

Tail/End/Back/Last



RUNNING TIME OF LINKED LIST OPERATIONS

removeLast() in doubly linked lists is  for worst caseO(1)

public Item removeLast() {

Node temp = last;
last = last.prev;

// if there was only one node in the doubly linked list.
if (last == null) {

first = null;
} else {

last.next = null;
}
n--;
return temp.item;

}
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Head/Beginning/Front/First

CS062

Tail/End/Back/Last

dll.removeLast()

n=2



RUNNING TIME OF LINKED LIST OPERATIONS

remove(int index) in doubly linked lists is  for worst caseO(n)

public Item remove(int index) {
rangeCheck(index);

if (index == 0) {
return removeFirst();

} else if (index == size() - 1) {
return removeLast();

} else {
Node previous = null;
Node finger = first;
// search for value indexed, keep track of previous
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
previous.next = finger.next;
finger.next.prev = previous;

n--;
// finger's value is old value, return it
return finger.item;

}

}
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?

Head/Beginning/Front/First

Tail/End/Back/Last



TEXT



JAVA COLLECTIONS

The Java Collections Framework

27

 https://en.wikipedia.org/wiki/Java_collections_framework  



JAVA COLLECTIONS

LinkedList in Java Collections

28

 https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

▸ Doubly linked list implementation of the List and Deque 
(stay tuned) interfaces.  

java.util.LinkedList;

public class LinkedList<E> extends 
AbstractSequentialList<E> implements List<E>, Deque<E>



ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides: 

▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html 

▸ Linked Lists: https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html 

▸ Textbook: 

▸ Chapter 1.3 (Page 142–146) 

▸ Textbook Website: 

▸ Linked Lists: https://algs4.cs.princeton.edu/13stacks/

29

Practice Problems:

▸ 1.3.18–1.3.27 (approach them as doubly linked lists).



TEXT



TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks 

▸ Queues 

▸ Applications 

▸ Java Collections 

▸ Iterators

31

Some slides adopted from Algorithms 4th Edition and Oracle tutorials



STACKS

Stacks

32

  

‣ Dynamic linear data structures. 
‣ Items are inserted and removed following the LIFO paradigm. 
‣ LIFO: Last In, First Out. 
‣ Similar to lists, there is a sequential nature to the data. 
‣ Remove the most recent item. 

‣ Metaphor of pancakes or cafeteria plate dispenser. 
‣ Want a pancake/plate? Pop the top pancake/plate. 
‣ Add a pancake/plate? Push a pancake/plate to make it the new top. 
‣ Want to see the top pancake/plate? Peek. 
‣ We want to make push and pop as time efficient as possible



STACKS

Example of stack operations

33

  

push To be or not to - be - - that - - - is

pop to be not that or be
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ARRAYLIST - REVIEW

add(Item item):Appends the item to the end of the ArrayList

34

  

CS062 ROCKS

0 1

Front End/Rear

!

2 3

al.add(“!”);

CS062 THROWS

Front End/Rear

al.remove();

remove():Retrieves and removes item from the end of ArrayList

0 1 2 3



STACKS

Implementing stacks with ArrayLists

35

  

‣ Where should the top go to make push and pop as efficient as possible? 
‣ The end/rear represents the top of the stack. 
‣ To push an item add(Item item).  
‣ Adds at the end. Average . 

‣ To pop an item remove().  
‣ Removes and returns the item from the end. Average . 

‣ To peek get(size()-1). 
‣ Retrieves the last item. . 

‣ If the front/beginning were to represent the top of the stack, then: 
‣ Push, pop would be ? And peek would be ?  
‣  and .

O(1)

O(1)

O(1)

O(n) O(1)

CS062 ROCKS

0 1

Front End/Rear

!

2 3



STACKS

Implementing stacks with singly linked lists
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‣ Where should the top go to make push and pop as efficient as possible? 
‣ The front represents the top of the stack. 
‣ To push an item add(Item item). 
‣ Adds at the head. . 

‣ To pop an item remove(). 
‣ Removes and retrieves from the head. . 

‣ To peek get(0). 
‣ Retrieves the head. . 

‣ If the end were to represent the top of the stack, then: 
‣ Push, pop, peek would all be ? 
‣ .

O(1)

O(1)

O(1)

O(n)

Head/Beginning/Front/First

CS062ROCKS?



STACKS

Implementing stacks with doubly linked lists
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‣ Where should the top go to make push and pop as efficient as possible? 
‣ The front represents the top of the stack. 
‣ To push an item addFirst(Item item). 
‣ Adds at the head. . 

‣ To pop an item removeFirst(). 
‣ Removes and retrieves from the head. . 

‣ To peek head.item. 
‣ Retrieves the head. . 

‣ Unnecessary memory overhead with extra pointers.  
‣ If the end were to re[resent the top of the stack, we’d need to use 
addLast(Item item), removeLast(), and tail.item to have  
complexity.

O(1)

O(1)

O(1)

O(1)

?

Head/Beginning/Front/First

CS062 !

Tail/End/Back/Last



STACKS

Textbook implementation of stacks

38

  

‣ ResizingArrayStack.java: for implementation of stacks with 
ArrayLists.  

‣ LinkedStack.java: for implementation of stacks with singly 
linked lists. 



TEXT



TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks 

▸ Queues 

▸ Applications 

▸ Java Collections 

▸ Iterators

40



QUEUES

Queues

41

  

‣ Dynamic linear data structures. 
‣ Items are inserted and removed following the FIFO paradigm. 
‣ FIFO: First In, First Out. 
‣ Similar to lists, there is a sequential nature to the data. 
‣ Remove the least recent item. 

‣ Metaphor of a line of people waiting to buy tickets. 
‣ Just arrived? Enqueue person to the end of line. 
‣ First to arrive? Dequeue person at the top of line. 
‣ We want to make enqueue and dequeue as time efficient as 

possible.



QUEUES

Example of queue operations

42

enqueue To be or not to - be - - that - - - is

dequeue To be or not to be
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QUEUES

Implementing queue with ArrayLists

43

  

‣ Where should we enqueue and dequeue items? 
‣ To enqueue an item add() at the end of arrayList.  
‣ Average . 

‣ To dequeue an item remove(0). 
‣ . 

‣ What if we add at the beginning and remove from end? 
‣ Now dequeue is cheap ( ) but enqueue becomes 

expensive ( ).

O(1)

O(n)

O(1)
O(n)

CS062 THROWS

0 1

Front End/Rear

ROCKS !

2 3



QUEUES

Implementing queue with singly linked list
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‣ Where should we enqueue and dequeue items? 
‣ To enqueue an item add() at the head of SLL  
‣ ( ). 

‣ To dequeue an item remove(size()-1)  
‣ ( ). 

‣ What if we add at the end and remove from Head? 
‣ Now dequeue is cheap ( ) but enqueue becomes expensive 

( ). 
‣  if we have a tail pointer.  
‣ Simple modification in code, big gains! 
‣ Version that textbook follows.

O(1)

O(n)

O(1)
O(n)

O(1)

Head/Beginning/Front/First

CS062ROCKS?



QUEUES

Implementing queue with doubly linked list
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‣ Where should we enqueue and dequeue items? 
‣ To enqueue an item addFirst() at the head of DLL 
‣  ( ). 

‣ To dequeue an item removeLast()
‣  ( ). 

‣ What if we add at the beginning and remove from end? 
‣ Both are !

O(1)

O(1)

O(1)

?

Head/Beginning/Front/First

CS062 !

Tail/End/Back/Last



QUEUES

Textbook implementation of queues
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‣ ResizingArrayQueue.java: for implementation of queues with 
ArrayLists.  

‣ LinkedQueue.java: for implementation of queues with singly 
linked lists. 
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TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks 

▸ Queues 

▸ Applications 

▸ Java Collections 

▸ Iterators
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APPLICATIONS

Stack applications

49

  

‣ Java Virtual Machine. 
‣ Basic mechanisms in compilers, interpreters (see CS101). 
‣ Back button in browser. 
‣ Undo in word processor. 
‣ Infix expression evaluation (Dijskstra’s algorithm with two 

stacks). 
‣ Postfix expression evaluation.



APPLICATIONS

Infix expression evaluation example
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APPLICATIONS

Postfix expression evaluation example
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Example: (52 - ((5 + 7) * 4) ⇒ 52 5 7 + 4 * -

7
→ → →

5                 5

52 push(52) 52            push(5) 52 push(7)

v1=pop()=7                             4           v1=pop()=4

12 v2=pop()=5          → 12                           → 48          v2=pop()=12

52         push(v2+v1)=push(12)          52          push(4)                     52          push(v2*v1)=48  

   

                 v1=pop()=48
                 v2=pop()=52                →            peek()=4 
       4        push(v2-v1)=4



APPLICATIONS

Queue applications

52

  

‣ Spotify playlist. 
‣ Data buffers (netflix, Hulu, etc.). 
‣ Asynchronous data transfer (file I/O, sockets). 
‣ Requests in shared resources (printers). 
‣ Traffic analysis. 
‣ Waiting times at calling center.



TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks 

▸ Queues 

▸ Applications 

▸ Java Collections 

▸ Iterators
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JAVA COLLECTIONS

The Java Collections Framework

54

 https://en.wikipedia.org/wiki/Java_collections_framework  



JAVA COLLECTIONS

Deque in Java Collections

55

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ Do not use Stack.  

▸ Queue is an interface…  

▸ It’s recommended to use Deque instead.  

▸ Double-ended queue (can add and remove from either end). 

java.util.Deque;

public interface Deque<E> extends Queue<E>
▸ You can choose between LinkedList and ArrayDeque 

implementations. 

▸Deque deque = new ArrayDeque(); //preferable



TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks 

▸ Queues 

▸ Applications 

▸ Java Collections 

▸ Iterators
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ITERATORS

Iterator Interface

57

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ Interface that allows us to traverse a collection one element 
at a time. 

public interface Iterator<E> { 
  //returns true if the iteration has more elements
  //that is if next() would return an element instead of throwing an exception
  boolean hasNext(); 
  
  //returns the next element in the iteration
  //post: advances the iterator to the next value
  E next(); 
  
  //removes the last element that was returned by next
  default void remove(); //optional, better avoid it altogether 
}



ITERATORS

Iterator Example

58

List<String> myList = new ArrayList<String>();
//… operations on myList

Iterator listIterator = myList.iterator(); 

while(listIterator.hasNext()){ 
  String elt = listIterator.next();  
  System.out.println(elt); 
}



ITERATORS

Java8 introduced lambda expressions

59

‣ Iterator interface now contains a new method. 

‣ default void forEachRemaining(Consumer<? super E> action)  

‣ Performs the given action for each remaining element until all elements have been 
processed or the action throws an exception. 

listIterator.forEachRemaining(System.out::println);



ITERATORS

Iterable Interface

60

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

▸ Interface that allows an object to be the target of a for-each loop: 

for(String elt: myList){ 
  System.out.println(elt); 
}

interface Iterable<E>{
  //returns an iterator over elements of type E
  Iterator<E> iterator();

  //Performs the given action for each element of the Iterable until all elements 
have  
  //been processed or the action throws an exception.

  default void forEach(Consumer<? super E> action);

}
myList.forEach(elt-> {System.out.println(elt)});  
myList.forEach(System.out::println);



ITERATORS

How to make your data structures iterable?

1. Implement Iterable interface. 

2. Make a private class that implements the Iterator 
interface.  

3. Override iterator() method to return an instance of 
the private class.



ITERATORS

Example: making ArrayList iterable

public class ArrayList<Item> implements Iterable<Item> {
     //…

public Iterator<Item> iterator() {

return new ArrayListIterator();  
     }

private class ArrayListIterator implements Iterator<Item> {

private int i = 0;

public boolean hasNext() {
              return i < n;

}

public Item next() {

return a[i++];

}

public void remove() {
               throw new UnsupportedOperationException();

}

}



ITERATORS

Traversing ArrayList

‣ All valid ways to traverse ArrayList and print its elements one by one. 

      for(String elt:a1) {
System.out.println(elt);

}

a1.forEach(System.out::println);
a1.forEach(elt->{System.out.println(elt);});

a1.iterator().forEachRemaining(System.out::println);
a1.iterator().forEachRemaining(elt->{System.out.println(elt);});



TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks 

▸ Queues 

▸ Applications 

▸ Java Collections 

▸ Iterators
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides: 

▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html 

▸ Deque: https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html 

▸ Iterator: https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html 

▸ Iterable: https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html 

▸ Textbook: 

▸ Chapter 1.3 (Page 126–157) 

▸ Website: 

▸ Stacks and Queues: https://algs4.cs.princeton.edu/13stacks/

65

Practice Problems:

▸ 1.3.2–1.3.8, 1.3.32–1.3.33


