
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

5: Analysis of Algorithms

BASIC DATA STRUCTURES

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Tom Yeh
he/him/his

TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of Memory Consumption

2

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION

Different Roles

3

You

Programmer
needs a working solution

Theoretician
Wants to understand

Client
Wants an efficient solution

INTRODUCTION

Why analyze algorithmic efficiency?

‣ Predict performance.
‣ Compare algorithms that solve the same problem.
‣ Provide guarantees.
‣ Understand theoretical basis.
‣ Avoid performance bugs.

Why is my program so slow?
Why does it run out of memory?

We can use a combination of experiments and mathematical modeling.

TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of Memory Consumption

5

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ 3-SUM: Given distinct numbers, how many unordered triplets sum to 0?n

‣ Input: 30 -40 -20 -10 40 0 10 5
‣ Output: 4
‣ 30 -40 10
‣ 30 -20 -10
‣ -40 40 0
‣ -10 0 10

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ 3-SUM: brute-force algorithm

public class ThreeSum {

public static int count(int[] a) {
int n = a.length;
int count = 0;
for (int i = 0; i < n; i++) {

for (int j = i+1; j < n; j++) {
for (int k = j+1; k < n; k++) {

if (a[i] + a[j] + a[k] == 0) {
count++;

}
}

}
}
return count;

}

public static void main(String[] args) {
String filename = args[0];
int fileSize = Integer.parseInt(args[1]);
try {

Scanner scanner = new Scanner(new File(filename));
int intList[] = new int[fileSize];
int i=0;
while(scanner.hasNextInt()){

intList[i++]=scanner.nextInt();
}
Stopwatch timer = new Stopwatch();
int count = count(intList);
System.out.println("elapsed time = " + timer.elapsedTime());
System.out.println(count);

}
catch (IOException ioe) {

throw new IllegalArgumentException("Could not open " + filename, ioe);
}

}

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Empirical Analysis

‣ Input: 8ints.txt
‣ Output: 4 and 0

‣ Input: 1Kints.txt
‣ Output: 70 and 0.081

‣ Input: 2Kints.txt
‣ Output: 528 and 0.38

‣ Input: 2Kints.txt
‣ Output: 528 and 0.371

‣ Input: 4Kints.txt
‣ Output: 4039 and 2.792

‣ Input: 8Kints.txt
‣ Output: 32074 and 21.623

‣ Input: 16Kints.txt
‣ Output: 255181 and 177.344

Input size Time
8 0

1000 0.081
2000 0.38
2000 0.371
4000 2.792
8000 21.623
16000 177.344

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Plots and log-log plots

 n

T(n)

logn

logT(n)

Straight line of slope 3

‣ Regression: (power-law), where n is problem size.
, where is slope.

‣ Experimentally: ~ , in our example for ThreeSum.

T(n) = anb

log T(n) = b log n + log a b
0.42 × 10−10n3

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Doubling hypothesis

‣ Doubling input size increases running time by a factor of

‣ Run program doubling the size of input. Estimate factor of growth:

‣ .

‣ E.g., in our example, for pair of input sizes and the
ratio is , therefore is approximately .

‣ Assuming we know , we can figure out .
‣ E.g., in our example, .
‣ Solving for we get .

T(n)
T(n/2)

T(n)
T(n/2)

=
anb

a(n
2)b

= 2b

8000 16000
8.2 b 3

b a
T(16000) = 177.34 = a × 160003

a a = 0.42 × 10−10

Input size Time
8 0

1000 0.081
2000 0.38
4000 2.792
8000 21.623

16000 177.344

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Practice Time

‣ Suppose you time your code and you make the following
observations. Which function is the closest model of ?

A.
B.
C.
D.

T(n)
n2

6 × 10−4n
5 × 10−9n2

7 × 10−9n2

Input size Time
1000 0
2000 0.0
4000 0.1
8000 0.3
16000 1.3
32000 5.1

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Answer

‣ C.
‣ Ratio is approximately , therefore .
‣ .
‣ Solving for .s

5 × 10−9n2

4 b = 2
T(32000) = 5.1 = a × 320002

a = 4.98 × 10−9

Input size Time
1000 0
2000 0.0
4000 0.1
8000 0.3
16000 1.3
32000 5.1

EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Effects on performance

‣ System independent effects: Algorithm + input data
‣ Determine in power law relationships.

‣ System dependent effects: Hardware (e.g., CPU, memory, cache)
+ Software (e.g., compiler, garbage collector) + System (E.g.,
operating system, network, etc).

‣ Dependent and independent effects determine in power law
relationships.

‣ Although it is hard to get precise measurements, experiments in
Computer Science are cheap to run.

b

a

TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of Memory Consumption

14

MATHEMATICAL MODELS OF RUNNING TIME

‣ Total Running Time

‣ Popularized by Donald Knuth in the 60s in the four volumes of
“The Art of Computer Programming”.
‣ Knuth won the Turing Award (The “Nobel” in CS) in 1974.

‣ In principle, accurate mathematical models for performance of
algorithms are available.

‣ Total running time = sum of cost x frequency for all operations.
‣ Need to analyze program to determine set of operations.
‣ Exact cost depends on machine, compiler.
‣ Frequency depends on algorithm and input data.

MATHEMATICAL MODELS OF RUNNING TIME

‣ Cost of basic operations

‣ Add < integer multiply < integer divide < floating-point add <
floating-point multiply < floating-point divide.

Operation Example Nanoseconds
Variable declaration int a

Assignment statement a = b
Integer comparison a < b

Array element access a[i]
Array length a.length

1D array allocation new int[n]
2D array allocation new int[n][n]

string concatenation s+t

c1

c2

c3
c4

c5
c6n
c7n2

c8n

MATHEMATICAL MODELS OF RUNNING TIME

‣ Example: 1-SUM

‣ How many operations as a function of ?

 int count = 0;
 for (int i = 0; i < n; i++) {
 if (a[i] == 0) {
 count++;
 }
 }

n

Operation Frequency

Variable declaration
Assignment

Less than
Equal to

Array access
Increment ton 2n

n
n

n + 1
2
2

MATHEMATICAL MODELS OF RUNNING TIME

‣ Example: 2-SUM

‣ How many operations as a function of ?

 int count = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 if (a[i] + a[j] == 0) {
 count++;
 }
 }
 }

n

Operation Frequency

Variable declaration
Assignment

Less than
Equal to

Array access
Increment to1/2n(n + 1) n2

n(n − 1)
1/2n(n − 1)

1/2(n + 1)(n + 2)
n + 2
n + 2

BECOMING TOO TEDIOUS TO CALCULATE

MATHEMATICAL MODELS OF RUNNING TIME

‣ Tilde notation

‣ Estimate running time (or memory) as a function of input size .
‣ Ignore lower order terms.

‣ When is large, lower order terms become negligible.

‣ Example 1: ~

‣ Example 2: ~

‣ Example 3: ~

‣ Technically ~ means that

n

n

1
6

n3 + 10n + 100 n3

1
6

n3 + 100n2 + 47 n3

1
6

n3 + 100n
2
3 +

1/2
n

n3

f(n) g(n) lim
n→∞

f(n)
g(n)

= 1

MATHEMATICAL MODELS OF RUNNING TIME

‣ Simplification

‣ Cost model: Use some basic operation as proxy for running
time.
‣ E.g., array accesses

‣ Combine it with tilde notation.

‣ ~ array accesses for the 2-SUM problemn2

Operation Frequency Tilde notation

Variable declaration ~
Assignment ~

Less than ~
Equal to ~

Array access ~
Increment to ~

n(n − 1)
1/2n(n − 1)

1/2(n + 1)(n + 2)
n + 2
n + 2

1/2n(n + 1) n2
n2
n2
n2
n
n

n2

MATHEMATICAL MODELS OF RUNNING TIME

‣ Back to the 3-SUM problem

‣ Approximately how many array accesses as a function of input
size ?

 int count = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 for (int k = j+1; k < n; k++) {
 if (a[i] + a[j] + a[k] == 0) {
 count++;
 }
 }
 }
 }

‣ array accesses.

n

n3

MATHEMATICAL MODELS OF RUNNING TIME

‣ Useful approximations for the analysis of algorithms

‣ Harmonic sum: ~
‣ Triangular sum: ~
‣ Geometric sum: ~ , when

power of 2.

‣ Binomial coefficients: ~ when k is a small constant.

‣ Use a tool like Wolfram alpha.

Hn = 1 + 1/2 + 1/3 + . . . + 1/n ln n
1 + 2 + 3 + . . . + n n2

1 + 2 + 4 + 8 + . . . + n = 2n − 1 n n

(n
k) nk

k!

MATHEMATICAL MODELS OF RUNNING TIME

‣ Practice Time

‣ How many array accesses does the following code make?
 int count = 0;
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 for (int k = 1; k < n; k=k*2) {
 if (a[i] + a[j] >= a[k]) {
 count++;
 }
 }
 }  

A.
B.
C.
D.

n2

n2 log n
n3

n3 log n

MATHEMATICAL MODELS OF RUNNING TIME

‣ Answer

‣ n2 log n

TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of Memory Consumption

25

ORDER OF GROWTH CLASSIFICATION

‣ Order-of-growth

‣ Definition: If ~ for some constant , then the order
of growth of is .
‣ Ignore leading coefficients.
‣ Ignore lower-order terms.

‣ We will use this definition in the mathematical analysis of the
running time of our programs as the coefficients depend on
the system.

‣ E.g., the order of growth of the running time of the ThreeSum
program is .

f(n) cg(n) c > 0
f(n) g(n)

n3

ORDER OF GROWTH CLASSIFICATION

‣ Common order-of-growth classifications

‣ Good news: only a small number of function suffice to describe
the order-of-growth of typical algorithms.

‣ : constant
‣ : logarithmic
‣ : linear
‣ : linearithmic
‣ : quadratic
‣ : cubic
‣ : exponential
‣ : factorial

1
log n
n
n log n
n2

n3

2n

n!

bigocheatsheet.com

ORDER OF GROWTH CLASSIFICATION

‣ Common order-of-growth classifications

Order-of-growth Name Typical code

Constant a=b+c

Logarithmic while(n>1){n=n/2;…} ~

Linear for(int i =0; i<n;i++{
…}

Linearithmic mergesort ~

Quadratic for(int i =0;i<n;i++) {
for(int j=0; j<n;j++){…}}

Cubic
for(int i =0;i<n;i++) {
for(int j=0; j<n;j++){

for(int k=0; k<n; k++){…}}}

T(n)/T(n /2)

1

log n

n

n log n

n2

n3

1

1

2

2

4

8

TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of Memory Consumption

29

ANALYSIS OF MEMORY CONSUMPTION

‣ Basics

‣ Bit: or .
‣ Byte: bits.
‣ Megabyte (MB): bytes.
‣ Gigabyte: bytes.

0 1
8

220

230

ANALYSIS OF MEMORY CONSUMPTION

‣ Typical memory usage for primitives and arrays

‣ boolean: 1 byte
‣ byte: 1 byte
‣ char: 2 bytes
‣ int: 4 bytes
‣ float: 4 bytes
‣ long: 8 bytes
‣ double: 8 bytes
‣ Array overhead: 24 bytes
‣ char[]:2n+24 bytes
‣ int[]:4n+24 bytes
‣ double[]:8n+24 bytes

ANALYSIS OF MEMORY CONSUMPTION

‣ Typical memory usage for objects

‣ Object overhead: 16 bytes
‣ Reference: 8 bytes
‣ Padding: padded to be a multiple of 8 bytes
‣ Example:
‣ public class Date {  
 private int day;  
 private int month;  
 private int year;  
}

‣ 16 bytes overhead + 3x4 bytes for ints + 4 bytes padding =
32 bytes

ANALYSIS OF MEMORY CONSUMPTION

‣ Practice Time

‣ How much memory does WeightedQuickUnionUF use as a function of ?

public class WeightedQuickUnionUF{  
 private int[] parent;
 private int[] size;
 private int count;

 public WeightedQuickUnionUF(int n) {
 parent = new int[n];
 size = new int[n];
 count = 0;
…
}

A. ~ bytes
B. ~ bytes
C. ~ bytes
D. ~ bytes

n

4n
8n
4n2

8n2

ANALYSIS OF MEMORY CONSUMPTION

‣ Answer

B. ~ bytes

‣ 16 bytes for object overhead
‣ Each array: 8 bytes for reference + 24 overhead + 4n for

integers
‣ 4 bytes for int
‣ 4 bytes for padding
‣ Total ~

8n

88 + 8n 8n

TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction

▸ Experimental Analysis of Running Time

▸ Mathematical Models of Running Time

▸ Order of Growth Classification

▸ Analysis of Memory Consumption

35

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 1.4 (pages 172-196, 200-205)

▸ Website:

▸ Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

36

Practice Problems:

▸ 1.4.1-1.4.9

TEXT

Finish Java Catch-All Lecture

ASSERTIONS

Pre and post conditions

‣ Pre-condition: Specification of what must be true for
method to work properly.

‣ Post-condition: Specification of what must be true at end
of method if precondition held before execution.

38

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

39

Lecture 4: The Catch-All Java Lecture

TEXT I/O

I/O streams

‣ Input stream: a sequence of data into the program.

‣ Output stream: a sequence of data out of the program.

‣ Stream sources and destinations include disk files, keyboard,
peripherals, memory arrays, other programs, etc.

‣ Data stored in variables, objects and data structures are temporary
and lost when the program terminates. Streams allow us to save
them in files, e.g., on disk or CD (!)

‣ Streams can support different kinds of data: bytes, principles,
characters, objects, etc.

40

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

TEXT I/O

Files

‣ Every file is placed in a directory in the file system.

‣ Absolute file name: the file name with its complete path and drive
letter.

‣ e.g., on Windows: C:\temp\somefile.txt

‣ On Mac/Unix: /home/temp/somefile.txt

‣ File: contains methods for obtaining file properties, renaming, and
deleting files. Not for reading/writing!

‣ CAUTION: DIRECTORY SEPARATOR IN WINDOWS IS \, WHICH IS SPECIAL CHARACTER IN JAVA. SHOULD BE
“\\” INSTEAD.

TEXT I/O

/**
 * Demonstrates File class and its operations.
 * @author https://liveexample.pearsoncmg.com/html/TestFileClass.html
 *
 */

import java.io.File;
import java.util.Date;

public class TestFile {
 public static void main(String[] args) {
 File file = new File("some.text");
 System.out.println("Does it exist? " + file.exists());
 System.out.println("The file has " + file.length() + " bytes");
 System.out.println("Can it be read? " + file.canRead());
 System.out.println("Can it be written? " + file.canWrite());
 System.out.println("Is it a directory? " + file.isDirectory());
 System.out.println("Is it a file? " + file.isFile());
 System.out.println("Is it absolute? " + file.isAbsolute());
 System.out.println("Is it hidden? " + file.isHidden());
 System.out.println("Absolute path is " + file.getAbsolutePath());
 System.out.println("Last modified on " + new Date(file.lastModified()));
 }
}

TEXT I/O

Writing data to a text file

▸ PrintWriter output = new PrintWriter(new
File(“filename”));

▸ New file will be created. If already exists, discard.

▸ Invoking the constructor may throw an I/O Exception…

▸ output.print and output.println work with Strings,
and primitives.

▸ Always close a stream!

TEXT I/O

/**
 * Demonstrates how to write to text file.
 * @author https://liveexample.pearsoncmg.com/html/WriteData.html
 *
 */

import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;

public class WriteData {
public static void main(String[] args) {

PrintWriter output = null;
try {

output = new PrintWriter(new File("addresses.txt"));
// Write formatted output to the file
output.print("Alexandra Papoutsaki ");
output.println(222);
output.print(“Tom Yeh ");
output.println(128);

} catch (IOException e) {
System.err.println(e.getMessage());

} finally {
if (output != null)

output.close();
}

}
}

TEXT I/O

Reading data from a text file

▸ java.util.Scanner reads Strings and primitives.

▸ Breaks input into tokens, demoted by whitespaces.

▸ To read from keyboard: Scanner input = new Scanner(System.in);

▸ To read from file: Scanner input = new Scanner(new
File(“filename”));

▸ Need to close stream as before.

▸ hasNext() tells us if there are more tokens in the stream. next() returns
one token at a time.

▸ Variations of next are nextLine(), nextByte(), nextShort(), etc.

TEXT I/O
/**
 * Demonstrates how to read data from a text file.
 * @author https://liveexample.pearsoncmg.com/html/ReadData.html
 *
 */

import java.io.File;
import java.io.IOException;
import java.util.Scanner;

public class ReadData {
public static void main(String[] args) {

Scanner input = null;
// Create a Scanner for the file
try {

input = new Scanner(new File("addresses.txt"));

// Read data from a file
while (input.hasNext()) {

String firstName = input.next();
String lastName = input.next();
int room = input.nextInt();
System.out.println(firstName + " " + lastName + " " + room);

}
} catch (IOException e) {

System.err.println(e.getMessage());
} finally {

if (input != null)
input.close();

}

}
}

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

47

Lecture 4: The Catch-All Java Lecture

JAVA GUIS

GUIs

▸ AWT: The Abstract Windowing Toolkit is found in the package
java.awt

▸ Heavyweight components.

▸ Implemented with native code written for that particular computer.

▸ The AWT library was written in six weeks!

▸ Swing: Java 1.2 extended AWT with the javax.swing package.

▸ Lightweight components.

▸ Written in Java.

48

JAVA GUIS

JFrame

▸ javax.swing.JFrame inherits from java.awt.Frame

▸ The outermost container in an application.

▸ To display a window in Java:

▸ Create a class that extends JFrame.

▸ Set the size.

▸ Set the location.

▸ Set it visible.

49

JAVA GUIS

JFrame
import javax.swing.JFrame;

public class MyFirstGUI extends JFrame {

public MyFirstGUI() {
super("First Frame");
setSize(500, 300);
setLocation(100, 100);
setVisible(true);

}

public static void main(String[] args) {
MyFirstGUI mfgui = new MyFirstGUI();

}

}

50

JAVA GUIS

Closing a GUI

51

▸ The default operation of the quit button is to set the
visibility to false. The program does not terminate!

▸ setDefaultCloseOperation can be used to control this
behavior.

▸ mfgui.setDefaultCloseOperation(JFrame.EXIT_O
N_CLOSE);

▸ More options (hide, do nothing, etc).

JAVA GUIS

Basic components

52

JAVA GUIS

Interactive displays

53

JAVA GUIS

Adding JComponents to JFrame

54

import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;

public class GUIDemo extends JFrame {
public GUIDemo() {

// Container cp = getContentPane();
// cp.setLayout(new FlowLayout());
// cp.add(new JLabel("Demo"));
// cp.add(new JButton("Button"));
JPanel mainPanel = new JPanel(new FlowLayout());
mainPanel.add(new JLabel("Demo"));
mainPanel.add(new JButton("Button"));
setContentPane(mainPanel);
setSize(500, 300);
setVisible(true);

}

public static void main(String[] args) {
GUIDemo gd = new GUIDemo();
gd.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

55

Lecture 4: The Catch-All Java Lecture

GRAPHICS

Java Graphics

56

▸ Create arbitrary objects you want to draw:

▸ Rectangle2D.Double, Line.Double, etc.

▸ Constructors take x, y coordinates and dimensions, but don’t
actually draw items.

▸ All drawing takes place in paint method using a “graphics content”.

▸ Triggered implicitly by uncovering window or explicitly by calling
the repaint method.

▸ Adds repaint event to draw queue and eventually draws it.

GRAPHICS

Graphics context

57

▸ All drawing is done in paint method of component.

▸ public void paint (Graphics g)

▸ g is a graphics context provided by the system.

▸ “pen” that does the drawing.

▸ You call repaint() not paint().

▸ Need to import classes from java.awt.*, java.geom.*,
javax.swing.*

▸ See MyGraphicsDemo.

GRAPHICS

General graphics applications

58

▸ Create an extension of component (JPanel or JFrame)
and implement paint method in subclass.

▸ At start of paint() method cast g to Graphics2D.

▸ Call repaint() every time you want the component to be
redrawn.

GRAPHICS

Geometric objects

59

▸ Objects from classes Rectangle2D.Double, Line2D.Double,
etc. from java.awt.geom

▸ Constructors take parameters x, y, width, height but don’t draw
object.

▸ Rectangle2D.Double

▸ Ellipse2D.Double

▸ Arc2D.Double

▸ etc.

GRAPHICS

Drawing

60

▸ myObj.setFrame(x, y,
width, height): moves and
sets size of component

▸ g2.draw(myObj): gives
outline

▸ g2.fill(myObj): gives filled
version

▸ g2.drawString(“a
string”, x, y): draws string

GRAPHICS

java.awt.Color

61

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

62

Lecture 4: The Catch-All Java Lecture

EVENTS

Action listeners

63

‣ Define what should be done when a user performs certain operations.

‣ e.g., clicks a button, chooses a menu item, presses Enter, etc.

‣ The application should implement the ActionListener interface.

‣ An instance of the application should be registered as a listener on one or more components.

‣ Implement the actionPerformed method.

public class MultiButtonApp implements ActionListener {
 ...
 //where initialization occurs:
 button1.addActionListener(this);
 button2.addActionListener(this);

 ...
 public void actionPerformed(ActionEvent e) {
 if(e.getSource() == button1){
 //do something
 }
 }
}

https://docs.oracle.com/javase/tutorial/uiswing/events/actionlistener.html

EVENTS

Mouse listeners

64

‣ Define what should be done when a user enters a component, presses or releases one of the
mouse buttons.

‣ The application should implement the MouseListener interface

‣ Implement methods mousePressed, mouseReleased, mouseEntered, mouseExited, and
mouseClicked.

‣ Or extend the MouseAdapter class

‣ Which has default implementations of all of them.

public class MouseEventDemo ... implements MouseListener {
 //where initialization occurs:
 //Register for mouse events on blankArea and the panel.
 blankArea.addMouseListener(this);
 addMouseListener(this);
 ...

 public void mousePressed(MouseEvent e) {
 saySomething("Mouse pressed; # of clicks: "
 + e.getClickCount(), e);
 }

https://docs.oracle.com/javase/tutorial/uiswing/events/mouselistener.html

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

65

Lecture 4: The Catch-All Java Lecture

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ JavaDoc: https://www.oracle.com/technetwork/articles/java/index-137868.html

▸ Exceptions: https://docs.oracle.com/javase/tutorial/essential/exceptions/

▸ Assertions: https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

▸ I/O: https://docs.oracle.com/javase/tutorial/essential/io

▸ Writing Event Listeners: https://docs.oracle.com/javase/tutorial/uiswing/events/index.html

▸ Java Graphics: https://github.com/pomonacs622021fa/Handouts/blob/master/graphics.md

▸ Programming with GUIs: https://github.com/pomonacs622021fa/Handouts/blob/main/JavaGUI.pdf

▸ Swing/GUI Cheat Sheet: https://github.com/pomonacs622021fa/Handouts/blob/master/swing.md

▸ Textbook:

▸ Chapter 1.2 (Page 107)

66

