
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

4: The Catch-All Java Lecture

FUNDAMENTALS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Tom Yeh
he/him/his

TEXT

Class News

▸ Start assignment early

▸ Learning communities will be posted tomorrow morning
(Friday)

TODAY’S LECTURE IN A NUTSHELL

Wrap up Lecture 3: Interfaces, and Generics

▸ Interfaces

▸ Generics

3

INTERFACES

Interfaces

▸ Methods form an object’s interface with the outside world

▸ Interface = a group of related methods with empty bodies

▸ Contracts of what a class must do, not how to do it, abstracting from implementation.

▸ Central concept in OOP.

▸ In Java, an interface is a reference type (like a class), that contains only constants,
method signatures, default methods, and static methods.

▸ A class that implements an interface is obliged to implement its methods.

▸ Method bodies exist only for default methods and static methods.

▸ Interfaces cannot be instantiated (no new keyword). They can only be implemented
by classes or extended by other interfaces.

4

INTERFACES

Example

public interface Moveable{
 int turn(Direction direction, double radius, double speed);

 default int stop(){ // Method bodies only exist for default and static methods
 speed=0;
 }
}

public class Car implements Moveable{
 int turn(Direction direction, double radius, double speed){
 //code goes here  
 }  
}

public class Bicycle implements Moveable{
 int turn(Direction direction, double radius, double speed){
 //code goes here  
 }  
}

5

INTERFACES

Interfaces

▸ A class can implement multiple interfaces.

▸ class A implements Interface1, Interface2{…}

▸ An interface can extend multiple interfaces.

▸ public interface GroupedInterface extends
Interface1,Interface2{…}

6

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance, Interfaces, and Generics

▸ Inheritance

▸ Interfaces

▸ Generics

7

GENERICS

Generics

▸ Compile-time errors can be easier to fix than run-time errors.

▸ Java introduced generics (similar to templates in C++) to help move more bugs to
compile-time (easier to debug!), eliminate casting, and improve abstraction. E.g.,

 List list = new ArrayList();
 list.add("hello");
 String s = (String) list.get(0);

 Is now:
 List<String> list = new ArrayList<String>();  
 list.add("hello");  
 String s = list.get(0); // no cast

▸ Generics enable types (classes and interfaces) to be used as parameters when defining
classes, interfaces, and methods.

▸ Type parameters allow you to re-use the same code with different inputs

▸ Similar to parameters where the inputs are values, the inputs to type parameters are types

8

GENERICS

Formal and actual type parameters

public interface List <E> {
 void add(E x);
 Iterator<E> iterator();
}

public interface Iterator<E> {
 E next();
 boolean hasNext();
}
▸ In the invocation (e.g., List<Integer>) all occurrences of the formal

type parameters are replaced by the actual type argument (e.g.,
Integer).

▸ Similar to how an argument replaces the parameters in a method when
it’s called, the actual type arguments replaces the generic E (formal type)

9

Formal type parameters

GENERICS

Generic classes

class name <T1, T2, …, Tn> {…}

▸ A type variable can be any non-primitive type (class, interface, array)

▸ E: element (common in data structures), T: type, K: key, V: value, N: number, etc.

/**  
* Generic version of the Box class.  
* https://docs.oracle.com/javase/tutorial/java/generics/types.html 
* @param <T> the type of the value being boxed  
*/

public class Box<T> {  
 private T t;  
 
 public void set(T t) { this.t = t; }  
 public T get() { return t; }  
}

‣ Invocation: Box<Integer> integerBox = new Box<Integer>();

10

GENERICS

Multiple Type Parameters Example
public interface Pair<K, V> {

 public K getKey();

 public V getValue();

}

public class OrderedPair<K, V> implements Pair<K, V> {

 private K key;

 private V value;

 public OrderedPair(K key, V value) {

 this.key = key;

 this.value = value;

 }

}

Pair<String, Integer> p1 = new OrderedPair<String, Integer>("Even", 8);

OrderedPair<String, Box<Integer>> p = new OrderedPair<String, Box<Integer>>("primes", new
Box<Integer>(...));

11

GENERICS

Generic methods

modifier (static) <T1, T2, …, Tn> return-type name(list of type parameters){…}}

▸ The type parameter’s scope is limited to the method which is

declared.

▸ Static, non-static generic methods, generic class constructors are
allowed.

▸ Type inference: allows you to invoke a generic method as an
ordinary method, without specifying a type between angle
brackets.

▸ E.g., className/objectName.genericMethod(arguments);

12

GENERICS

Example

▸ Generic method that swaps the elements of an array at
two specified indices.

public static <T> void swap(T[] a, int i, int j) {  
 T temp = a[i];  
 a[i] = a[j];  
 a[j] = temp;  
}

13

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ Interfaces and Inheritance: https://docs.oracle.com/javase/tutorial/java/IandI/index.html

▸ Generics: https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/intro.html

▸ Textbook:

▸ Pages 100-104, 122

▸ Textbook Website:

▸ Generics: https://algs4.cs.princeton.edu/13stacks/

14

Practice Problems:

▸ If you want more practice with hiding vs overriding:
http://javabypatel.blogspot.com/2016/04/java-interview-questions.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: The Catch-All Java Lecture

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

15

PACKAGES

What is a package?

‣ A grouping of related classes and interfaces that provides access protection and name
space management.

‣ e.g., java.lang for fundamental classes or java.io for classes related to reading input
and writing output.

‣ Packages correspond to folders/directories.

‣ A package creates a new namespace, prevent conflicts with type names in other packages

‣ Lower-case names.

‣ package whatevername; at top of file.

‣ import graphics.*; for including all classes/interfaces.

‣ or import graphics.Circle; for more specific access.

16

https://docs.oracle.com/javase/tutorial/java/package/packages.html

PACKAGES

Access modifiers

17

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

No modifier Y Y N N

private Y N N N

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: The Catch-All Java Lecture

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

18

JAVADOC

Java Documentation Generation System

‣ Reads JavaDoc comments and gives HTML pages

‣ JavaDoc comment = description written in HTML + tags

‣ Enclosed in /** */

‣ Must precede class, variable, constructor or method declaration

‣ For class:

‣ @author author name – classes and interfaces

‣ @version date - classes and interfaces

‣ For method:

‣ @param param name and description – methods and constructors

‣ @return value returned, if any – methods

‣ @throws description of any exceptions thrown - methods

19

https://www.oracle.com/technetwork/articles/java/index-137868.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: The Catch-All Java Lecture

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

20

EXCEPTIONS

Exceptions are exceptional or unwanted events

▸ That is operations that disrupt the normal flow of the program.

▸ E.g., divide a number by zero, run out of memory, ask for a file that
does not exist, etc.

▸ When an error occurs within a method, the method throws an exception
object that contains its name, type, and state of program.

▸ The runtime system looks for something to handle the exception among
the call stack, the list of methods called (in reverse order) by main to
reach the error.

▸ The exception handler catches the exception. If no appropriate handler,
the program terminates.

21

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

EXCEPTIONS

java.lang.Throwable

22

https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

Throwable

Exception Error

OutOfMemory
Error

Other Error
subclasses

Other
Exception
subclasses

IOExceptionRuntimeException

NullPointer
Exception

Arithmetic
Exception

IndexOutOfBounds
Exception

Other
RuntimeException

subclasses

EXCEPTIONS

Three major types of exception classes

▸ Error: rare internal system errors that an application cannot recover from.

▸ Typically not caught and program has to terminate.

▸ e.g., java.lang.OutOfMemoryError or java.lang.StackOverflowError

▸ Exception: errors caused by program and external circumstances.

▸ Can be caught and handled.

▸ e.g., java.io.Exception

▸ RuntimeException: programming errors that can occur in any Java method.

▸ Method not required to declare that it throws any of the exception.

▸ e.g., java.lang.IndexOutOfBoundsException, java.lang.NullPointerException,
java.lang.ArithmeticException

▸ Unchecked exceptions: Error and RuntimeException and subclasses.

▸ Checked exceptions: All other exceptions - programmer has to check and deal with them.

23

https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

EXCEPTIONS

Handling exceptions

▸ Three operations:

▸ Declaring an exception

▸ Throwing an exception

▸ Catching an exception

method1(){
 try {
 method2();
 } catch (Exception e) {
 System.err.println(e.getMessage());
 }
}
method2() throws Exception{
 if(some error) {
 throw new Exception();
 }
}

24

https://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

CATCH EXCEPTION

DECLARE EXCEPTION
THROW EXCEPTION

EXCEPTIONS

Declaring exceptions

▸ Every method must state the types of checked exceptions it might
throw in the method header so that the caller of the method is
informed of the exception.

▸ System errors and runtime exceptions can happen to any code,
therefore Java does not require explicit declaration of
unchecked exceptions.

▸ public void exceptionalMethod() throws IOException{

▸ throws: the method might throw an exception. Can also throw
multiple exceptions, separated by comma.

25

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

EXCEPTIONS

Throwing exceptions

▸ If an error is detected, then the program can throw an
exception.

▸ e.g., you have asked for age and the user gave you a
string. You can throw an IllegalArgumentException.

▸ throw new IllegalArgumentException(“Wrong argument”);

▸ The argument in the constructor is called the exception
message. You can access it by invoking getMessage().

▸ throws FOR DECLARING AN EXCEPTION, throw TO THROW AN EXCEPTION

26

https://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html

EXCEPTIONS

Catching exceptions

▸ An exception can be caught and handled in a try-catch block.

method(){
 try {
 statements; //statements that could thrown exception
 } catch (Exception1 e1) {
 //handle e1;
 }
 catch (Exception2 e2) {
 //handle e2;
 }
}
▸ If no exception is thrown, then the catch blocks are skipped.

▸ If an exception is thrown, the execution of the try block ends at the responsible statement.

▸ The order of catch blocks is important. A compile error will result if a catch block for a superclass type appears before
a catch block for a subclass. E.g., catch(Exception ex) followed by catch(RuntimeException ex) won’t compile.

▸ If a method declares a checked exception (e.g., void p1() throws IOException) and you invoke it, you have to
enclose it in a try catch block or declare to throw the exception in the calling method (e.g., try{ p1();} catch
(IOException e){…}.

27

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

EXCEPTIONS

finally block

‣ Used when you want to execute some code regardless of whether
an exception occurs or is caught

method(){
 try {
 statements; //statements that could thrown exception
 } catch (Exception1 e) {
 //handle e; catch is optional.
 }
 finally{
 //statements that are executed no matter what;
 }
}
‣ The finally block will execute no matter what. Even after a return.

28

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

EXCEPTIONS

/**
 * Illustrates try,catch, finally blocks
 * @author https://docs.oracle.com/javase/tutorial/essential/exceptions/putItTogether.html
 *
 */
import java.io.*;
import java.util.List;
import java.util.ArrayList;

public class ListOfNumbers {
// Note: This class will not compile yet.

private List<Integer> list;
private static final int SIZE = 10;

public ListOfNumbers() {
list = new ArrayList<Integer>(SIZE);
for (int i = 0; i < SIZE; i++) {

list.add(new Integer(i));
}

}

public void writeList() {
PrintWriter out = null;

try {
System.out.println("Entering" + " try statement");

out = new PrintWriter(new FileWriter("OutFile.txt"));
for (int i = 0; i < SIZE; i++) {

out.println("Value at: " + i + " = " + list.get(i));
}

} catch (IndexOutOfBoundsException e) {
System.err.println("Caught IndexOutOfBoundsException: " + e.getMessage());

} catch (IOException e) {
System.err.println("Caught IOException: " + e.getMessage());

} finally {
if (out != null) {

System.out.println("Closing PrintWriter");
out.close();

} else {
System.out.println("PrintWriter not open");

}
}

}

}

29

EXCEPTIONS

Practice Time

‣ 1. Is there anything wrong with this exception handler?

try {

} catch (Exception e) {

} catch (ArithmeticException a) {

}

30

EXCEPTIONS

Answers

‣ 1. The ordering matters! The second handler can never be
reached and the code won’t compile.

31

https://docs.oracle.com/javase/tutorial/essential/exceptions/QandE/answers.html

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

32

Lecture 4: The Catch-All Java Lecture

TEXT

Stopped here!

ASSERTIONS

Pre and post conditions

‣ Pre-condition: Specification of what must be true for
method to work properly.

‣ Post-condition: Specification of what must be true at end
of method if precondition held before execution.

34

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

35

Lecture 4: The Catch-All Java Lecture

TEXT I/O

I/O streams

‣ Input stream: a sequence of data into the program.

‣ Output stream: a sequence of data out of the program.

‣ Stream sources and destinations include disk files, keyboard,
peripherals, memory arrays, other programs, etc.

‣ Data stored in variables, objects and data structures are temporary
and lost when the program terminates. Streams allow us to save
them in files, e.g., on disk or CD (!)

‣ Streams can support different kinds of data: bytes, principles,
characters, objects, etc.

36

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

TEXT I/O

Files

‣ Every file is placed in a directory in the file system.

‣ Absolute file name: the file name with its complete path and drive
letter.

‣ e.g., on Windows: C:\temp\somefile.txt

‣ On Mac/Unix: /home/temp/somefile.txt

‣ File: contains methods for obtaining file properties, renaming, and
deleting files. Not for reading/writing!

‣ CAUTION: DIRECTORY SEPARATOR IN WINDOWS IS \, WHICH IS SPECIAL CHARACTER IN JAVA. SHOULD BE
“\\” INSTEAD.

TEXT I/O

/**
 * Demonstrates File class and its operations.
 * @author https://liveexample.pearsoncmg.com/html/TestFileClass.html
 *
 */

import java.io.File;
import java.util.Date;

public class TestFile {
 public static void main(String[] args) {
 File file = new File("some.text");
 System.out.println("Does it exist? " + file.exists());
 System.out.println("The file has " + file.length() + " bytes");
 System.out.println("Can it be read? " + file.canRead());
 System.out.println("Can it be written? " + file.canWrite());
 System.out.println("Is it a directory? " + file.isDirectory());
 System.out.println("Is it a file? " + file.isFile());
 System.out.println("Is it absolute? " + file.isAbsolute());
 System.out.println("Is it hidden? " + file.isHidden());
 System.out.println("Absolute path is " + file.getAbsolutePath());
 System.out.println("Last modified on " + new Date(file.lastModified()));
 }
}

TEXT I/O

Writing data to a text file

▸ PrintWriter output = new PrintWriter(new
File(“filename”));

▸ New file will be created. If already exists, discard.

▸ Invoking the constructor may throw an I/O Exception…

▸ output.print and output.println work with Strings,
and primitives.

▸ Always close a stream!

TEXT I/O

/**
 * Demonstrates how to write to text file.
 * @author https://liveexample.pearsoncmg.com/html/WriteData.html
 *
 */

import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;

public class WriteData {
public static void main(String[] args) {

PrintWriter output = null;
try {

output = new PrintWriter(new File("addresses.txt"));
// Write formatted output to the file
output.print("Alexandra Papoutsaki ");
output.println(222);
output.print(“Tom Yeh ");
output.println(128);

} catch (IOException e) {
System.err.println(e.getMessage());

} finally {
if (output != null)

output.close();
}

}
}

TEXT I/O

Reading data from a text file

▸ java.util.Scanner reads Strings and primitives.

▸ Breaks input into tokens, demoted by whitespaces.

▸ To read from keyboard: Scanner input = new Scanner(System.in);

▸ To read from file: Scanner input = new Scanner(new
File(“filename”));

▸ Need to close stream as before.

▸ hasNext() tells us if there are more tokens in the stream. next() returns
one token at a time.

▸ Variations of next are nextLine(), nextByte(), nextShort(), etc.

TEXT I/O
/**
 * Demonstrates how to read data from a text file.
 * @author https://liveexample.pearsoncmg.com/html/ReadData.html
 *
 */

import java.io.File;
import java.io.IOException;
import java.util.Scanner;

public class ReadData {
public static void main(String[] args) {

Scanner input = null;
// Create a Scanner for the file
try {

input = new Scanner(new File("addresses.txt"));

// Read data from a file
while (input.hasNext()) {

String firstName = input.next();
String lastName = input.next();
int room = input.nextInt();
System.out.println(firstName + " " + lastName + " " + room);

}
} catch (IOException e) {

System.err.println(e.getMessage());
} finally {

if (input != null)
input.close();

}

}
}

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

43

Lecture 4: The Catch-All Java Lecture

JAVA GUIS

GUIs

▸ AWT: The Abstract Windowing Toolkit is found in the package
java.awt

▸ Heavyweight components.

▸ Implemented with native code written for that particular computer.

▸ The AWT library was written in six weeks!

▸ Swing: Java 1.2 extended AWT with the javax.swing package.

▸ Lightweight components.

▸ Written in Java.

44

JAVA GUIS

JFrame

▸ javax.swing.JFrame inherits from java.awt.Frame

▸ The outermost container in an application.

▸ To display a window in Java:

▸ Create a class that extends JFrame.

▸ Set the size.

▸ Set the location.

▸ Set it visible.

45

JAVA GUIS

JFrame
import javax.swing.JFrame;

public class MyFirstGUI extends JFrame {

public MyFirstGUI() {
super("First Frame");
setSize(500, 300);
setLocation(100, 100);
setVisible(true);

}

public static void main(String[] args) {
MyFirstGUI mfgui = new MyFirstGUI();

}

}

46

JAVA GUIS

Closing a GUI

47

▸ The default operation of the quit button is to set the
visibility to false. The program does not terminate!

▸ setDefaultCloseOperation can be used to control this
behavior.

▸ mfgui.setDefaultCloseOperation(JFrame.EXIT_O
N_CLOSE);

▸ More options (hide, do nothing, etc).

JAVA GUIS

Basic components

48

JAVA GUIS

Interactive displays

49

JAVA GUIS

Adding JComponents to JFrame

50

import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;

public class GUIDemo extends JFrame {
public GUIDemo() {

// Container cp = getContentPane();
// cp.setLayout(new FlowLayout());
// cp.add(new JLabel("Demo"));
// cp.add(new JButton("Button"));
JPanel mainPanel = new JPanel(new FlowLayout());
mainPanel.add(new JLabel("Demo"));
mainPanel.add(new JButton("Button"));
setContentPane(mainPanel);
setSize(500, 300);
setVisible(true);

}

public static void main(String[] args) {
GUIDemo gd = new GUIDemo();
gd.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

51

Lecture 4: The Catch-All Java Lecture

GRAPHICS

Java Graphics

52

▸ Create arbitrary objects you want to draw:

▸ Rectangle2D.Double, Line.Double, etc.

▸ Constructors take x, y coordinates and dimensions, but don’t
actually draw items.

▸ All drawing takes place in paint method using a “graphics content”.

▸ Triggered implicitly by uncovering window or explicitly by calling
the repaint method.

▸ Adds repaint event to draw queue and eventually draws it.

GRAPHICS

Graphics context

53

▸ All drawing is done in paint method of component.

▸ public void paint (Graphics g)

▸ g is a graphics context provided by the system.

▸ “pen” that does the drawing.

▸ You call repaint() not paint().

▸ Need to import classes from java.awt.*, java.geom.*,
javax.swing.*

▸ See MyGraphicsDemo.

GRAPHICS

General graphics applications

54

▸ Create an extension of component (JPanel or JFrame)
and implement paint method in subclass.

▸ At start of paint() method cast g to Graphics2D.

▸ Call repaint() every time you want the component to be
redrawn.

GRAPHICS

Geometric objects

55

▸ Objects from classes Rectangle2D.Double, Line2D.Double,
etc. from java.awt.geom

▸ Constructors take parameters x, y, width, height but don’t draw
object.

▸ Rectangle2D.Double

▸ Ellipse2D.Double

▸ Arc2D.Double

▸ etc.

GRAPHICS

Drawing

56

▸ myObj.setFrame(x, y,
width, height): moves and
sets size of component

▸ g2.draw(myObj): gives
outline

▸ g2.fill(myObj): gives filled
version

▸ g2.drawString(“a
string”, x, y): draws string

GRAPHICS

java.awt.Color

57

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

58

Lecture 4: The Catch-All Java Lecture

EVENTS

Action listeners

59

‣ Define what should be done when a user performs certain operations.

‣ e.g., clicks a button, chooses a menu item, presses Enter, etc.

‣ The application should implement the ActionListener interface.

‣ An instance of the application should be registered as a listener on one or more components.

‣ Implement the actionPerformed method.

public class MultiButtonApp implements ActionListener {
 ...
 //where initialization occurs:
 button1.addActionListener(this);
 button2.addActionListener(this);

 ...
 public void actionPerformed(ActionEvent e) {
 if(e.getSource() == button1){
 //do something
 }
 }
}

https://docs.oracle.com/javase/tutorial/uiswing/events/actionlistener.html

EVENTS

Mouse listeners

60

‣ Define what should be done when a user enters a component, presses or releases one of the
mouse buttons.

‣ The application should implement the MouseListener interface

‣ Implement methods mousePressed, mouseReleased, mouseEntered, mouseExited, and
mouseClicked.

‣ Or extend the MouseAdapter class

‣ Which has default implementations of all of them.

public class MouseEventDemo ... implements MouseListener {
 //where initialization occurs:
 //Register for mouse events on blankArea and the panel.
 blankArea.addMouseListener(this);
 addMouseListener(this);
 ...

 public void mousePressed(MouseEvent e) {
 saySomething("Mouse pressed; # of clicks: "
 + e.getClickCount(), e);
 }

https://docs.oracle.com/javase/tutorial/uiswing/events/mouselistener.html

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

61

Lecture 4: The Catch-All Java Lecture

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ JavaDoc: https://www.oracle.com/technetwork/articles/java/index-137868.html

▸ Exceptions: https://docs.oracle.com/javase/tutorial/essential/exceptions/

▸ Assertions: https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

▸ I/O: https://docs.oracle.com/javase/tutorial/essential/io

▸ Writing Event Listeners: https://docs.oracle.com/javase/tutorial/uiswing/events/index.html

▸ Java Graphics: https://github.com/pomonacs622021fa/Handouts/blob/master/graphics.md

▸ Programming with GUIs: https://github.com/pomonacs622021fa/Handouts/blob/main/JavaGUI.pdf

▸ Swing/GUI Cheat Sheet: https://github.com/pomonacs622021fa/Handouts/blob/master/swing.md

▸ Textbook:

▸ Chapter 1.2 (Page 107)

62

