
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

3: Inheritance, Interfaces, and Generics

FUNDAMENTALS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Tom Yeh
he/him/his

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance, Interfaces, and Generics

▸ Finish Java Basics

▸ Inheritance

▸ Interfaces

▸ Generics

2

Some slides adopted from Algorithms, 4th Edition and Oracle tutorials

TEXT

Reminders

▸ 1st quiz this Thursday

▸ 1st programming assignment to be released today

ARRAYS

Practice Time:

1. The term "instance variable" is another name for ___.

2. The term "class variable" is another name for ___.

3. A local variable stores temporary state; it is declared inside a ___.

4. A variable declared within the opening and closing parentheses of a method
signature is called a ____. The actual value passed is called an ___.

5. What are the eight primitive data types supported by the Java programming
language?

6. Character strings are represented by the class ___.

7. An ___ is a container object that holds a fixed number of values of a single
type.

4

ARRAYS

Answers:

1. The term "instance variable" is another name for non-static/member field.

2. The term "class variable" is another name for static field.

3. A local variable stores temporary state; it is declared inside a method.

4. A variable declared within the opening and closing parentheses of a method
is called a parameter. The actual value passed is called an argument.

5. What are the eight primitive data types supported by the Java programming
language? byte, short, int, long, float, double, boolean, char

6. Character strings are represented by the class java.lang.String.

7. An array is a container object that holds a fixed number of values of a single
type.

5

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_variables.html

TODAY’S LECTURE IN A NUTSHELL

Lecture3: Finishing Java Basics

▸ Methods

▸ Arrays

▸ Operators

▸ Control Flow

6

OPERATORS

Operator precedence

7

Operators Precedence
postfix expr++ expr--
unary +/++expr -/--expr !boolean

multiplicative * / %
additive + -

relational < > <= >= instanceOf
equality == !=

logical AND &&
logical OR ||

assignment = += -= *= /=

OPERATORS

Assignment operator

▸ = assigns the value on its right to the operand on its left

▸ e.g., int cadence = 3;

8

OPERATORS

Arithmetic operators
/**
 * Illustration of the arithmetic operators
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html
 *
 */
public class ArithmeticDemo {

 public static void main (String[] args) {

 int result = 1 + 2;
 // result is now 3
 System.out.println("1 + 2 = " + result);
 int original_result = result;

 result = result - 1;
 // result is now 2
 System.out.println(original_result + " - 1 = " + result);
 original_result = result;

 result = result * 2;
 // result is now 4
 System.out.println(original_result + " * 2 = " + result);
 original_result = result;

 result = result / 2;
 // result is now 2
 System.out.println(original_result + " / 2 = " + result);
 original_result = result;

 result = result + 8;
 // result is now 10
 System.out.println(original_result + " + 8 = " + result);
 original_result = result;

 result = result % 7;
 // result is now 3
 System.out.println(original_result + " % 7 = " + result);
 }
}

9

Output:

1 + 2 = 3
3 - 1 = 2
2 * 2 = 4
4 / 2 = 2
2 + 8 = 10
10 % 7 = 3

OPERATORS

Unary operators require only one operand
/**
 * Illustration of the unary operators
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html
 *
 */
public class UnaryDemo {

 public static void main(String[] args) {

 int result = +1;
 // result is now 1
 System.out.println(result);

 result--;
 // result is now 0
 System.out.println(result);

 result++;
 // result is now 1
 System.out.println(result);

 result = -result;
 // result is now -1
 System.out.println(result);

 boolean success = false;
 // false
 System.out.println(success);
 // true
 System.out.println(!success);
 }
}

10

OPERATORS

The ++/-- operators can be applied pre or post operand
/**
 * Illustration of the prefix/postfix unary operator
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html
 *
 */
public class PrePostDemo {
 public static void main(String[] args){
 int i = 3;
 i++;
 // prints 4
 System.out.println(i);
 ++i;
 // prints 5
 System.out.println(i);
 // prints 6
 System.out.println(++i);
 // prints 6
 System.out.println(i++);
 // prints 7
 System.out.println(i);
 }
}

11

OPERATORS

Equality/Relational operators
/**
 * Illustration of the equality/relational operators
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html
 *
 */
public class ComparisonDemo {

 public static void main(String[] args){
 int value1 = 1;
 int value2 = 2;
 if(value1 == value2)
 System.out.println("value1 == value2");
 if(value1 != value2)
 System.out.println("value1 != value2");
 if(value1 > value2)
 System.out.println("value1 > value2");
 if(value1 < value2)
 System.out.println("value1 < value2");
 if(value1 <= value2)
 System.out.println("value1 <= value2");
 }
}

12

OPERATORS

Conditional operators
/**
 * Illustration of the equality/relational operators
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html
 *
 */
public class ConditionalDemo {

 public static void main(String[] args){
 int value1 = 1;
 int value2 = 2;
 if((value1 == 1) && (value2 == 2))
 System.out.println("value1 is 1 AND value2 is 2");
 if((value1 == 1) || (value2 == 1))
 System.out.println("value1 is 1 OR value2 is 1");
 }

}

13

OPERATORS

Practice Time

14

1.Consider the following code:
arrayOfInts[j] > arrayOfInts[j+1]
Which operators does the code contain?

2.Consider the following code snippet:
int i = 10;  
int n = i++%5;
a.What are the values of i and n after the code is executed?
b.What are the final values of i and n if instead of using the postfix

increment operator (i++), you use the prefix version (++i))?
3.To invert the value of a boolean, which operator would you use?
4.Which operator is used to compare two values, = or == ?

OPERATORS

Answers:

15

1.>, +
2.

a. i is 11, and n is 0
b. i is 11, and n is 1.

3.The logical complement operator !
4.==

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_operators.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Java Basics

▸ Control Flow

16

CONTROL FLOW

If-then statement

public void applyBrakes() {
 // the "if" clause: bicycle must be moving
 if (isMoving) { // condition MUST be inside parens
 // the "then" clause: decrease current speed
 currentSpeed--;
 }
}

17

CONTROL FLOW

If-then-else statement

/**
 * Illustration of the if then else control flow
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/if.html
 *
 */
public class IfElseDemo {
 public static void main(String[] args) {

 int testscore = 76;
 char grade;

 if (testscore >= 90) {
 grade = 'A';
 } else if (testscore >= 80) {
 grade = 'B';
 } else if (testscore >= 70) {
 grade = 'C';
 } else if (testscore >= 60) {
 grade = 'D';
 } else {
 grade = 'F';
 }
 System.out.println("Grade = " + grade);
 }
}

18

ONCE A CONDITION IS SATISFIED, THE APPROPRIATE STATEMENTS ARE EXECUTED AND THE
REMAINING CONDITIONS ARE NOT EVALUATED.

CONTROL FLOW

While statement

/**
 * Illustration of the if then else control flow
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/while.html
 *
 */
public class WhileDemo {

 public static void main(String[] args){
 int count = 1;
 while (count < 11) {
 System.out.println("Count is: " + count);
 count++;
 }
 }
}

19

CONTROL FLOW

For statement

for (initialization; termination; increment) {
 statement(s)
}

/**
 * Illustration of the for loop
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html
 *
 */
public class ForDemo {
 public static void main(String[] args){
 for(int i=1; i<11; i++){
 System.out.println("Count is: " + i);
 }
 }
}

20

CONTROL FLOW

Enhanced for statement in most data structures

/**
 * Illustration of the enhanced for flow
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html
 *
 */
class EnhancedFor {
 public static void main(String[] args){
 int[] numbers =
 {1,2,3,4,5,6,7,8,9,10};
 for (int item : numbers) {
 System.out.println("Count is: " + item);
 }
 }
}

21

CONTROL FLOW

Break statement

‣ Use break to terminate a for or while loop.

/**
 * Illustration of the break branch
 *
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html
 *
 */
public class BreakDemo {

public static void main(String[] args) {

int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076, 2000, 8, 622, 127 };
int searchfor = 12;

int i;
boolean foundIt = false;

for (i = 0; i < arrayOfInts.length; i++) {
if (arrayOfInts[i] == searchfor) {

foundIt = true;
break;

}
}

if (foundIt) {
System.out.println("Found " + searchfor + " at index " + i);

} else {
System.out.println(searchfor + " not in the array");

}
}

}

22

CONTROL FLOW

Continue statement

‣ Use continue to skip the current iteration of for or while loop.
 * Illustration of the continue branch
 *
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html
 *
 */
public class ContinueDemo {
 public static void main(String[] args) {

 String searchMe = "peter piper picked a " + "peck of pickled peppers";
 int max = searchMe.length();
 int numPs = 0;

 for (int i = 0; i < max; i++) {
 // interested only in p's
 if (searchMe.charAt(i) != 'p')
 continue; // What happens if we used a break here?

 // process p's
 numPs++;
 }
 System.out.println("Found " + numPs + " p's in the string.");
 }
}

23

CONTROL FLOW

Return statement

‣ The return statement exits from the current method, and
control flow returns to where the method was invoked.

‣ Can return a value, e.g., return counter++;

‣ Or not, e.g., return;

24

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Java Basics

▸ Methods

▸ Arrays

▸ Operators

▸ Control Flow

25

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ Language Basics: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html

▸ Textbook:

▸ Chapter 1.1 (Pages 8–35)

▸ Chapter 1.2 (Pages 64–77, 84—88, 96—99)

26

Practice Problems:

▸ 1.1.1–1.1.5, 1.1.8–1.1.12, 1.2.4,1.2.8

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance, Interfaces, and Generics

▸ Inheritance

▸ Interfaces

▸ Generics

27

Some slides adopted from Algorithms, 4th Edition and Oracle tutorials

INHERITANCE

Inheritance

▸ When you want to create a new class and there is already a class that
includes some of the code that you want, you can derive your new class from
the existing class. → reuse code!

▸ Central concept in OOP.

▸ A class that is derived from another is called a subclass or child class.

▸ The class from which the subclass is derived is called a superclass or parent
class.

▸ Single inheritance: A class can only extend ONE AND ONLY one parent class.

▸ Multilevel inheritance: A class can extend a class which extends another class
etc.

28

INHERITANCE

Remember our Bicycle class?

/**
 * Represents a bicycle
 * @author https://docs.oracle.com/javase/tutorial/java/concepts/class.html
 *
 */
public class Bicycle {

 //instance variables
 private int cadence = 0;
 private int speed = 0;
 private int gear = 1;

 // the Bicycle class has one constructor
 public Bicycle(int startCadence, int startSpeed, int startGear) {
 gear = startGear;
 cadence = startCadence;
 speed = startSpeed;
 }

 public void changeCadence(int newValue) {
 cadence = newValue;
 }

 public void changeGear(int newValue) {
 gear = newValue;
 }

 public void changeSpeed(int change) {
 speed = speed + change;
 }

 public int getCadence() {
 return cadence;
 }

 public void printGear() {
 System.out.println("Gear:" + gear);
 }

 public String toString() {
 return "cadence:" + cadence + " speed:" + speed + " gear:" + gear;
 }
}

29

INHERITANCE

A MountainBike is a specialized type of Bicycle

/**
 * Demonstrates concept of inheritance
 * @author https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
 *
 */
public class MountainBike extends Bicycle { // MountainBike is subclass, Bicycle is superclass

 // the MountainBike subclass adds one field
 private int seatHeight;

 // the MountainBike subclass has one constructor
 public MountainBike(int startHeight,
 int startCadence,
 int startSpeed,
 int startGear) {
 super(startCadence, startSpeed, startGear); // Calls constructor for superclass
 seatHeight = startHeight;
 }

 // the MountainBike subclass adds one method
 public void setHeight(int newValue) {
 seatHeight = newValue;
 }
}

30

INHERITANCE

Inheritance

‣ The subclass inherits all the public and protected members.

‣ Not the private ones, although it can access them with appropriate getters and setters.

‣ The inherited fields can be used directly, just like any other fields.

‣ You can declare a field in the subclass with the same name as one in the superclass, thus
hiding it.

‣ AVOID
‣ You can write a new instance method in the subclass that has the same signature as the one

in the superclass, thus overriding it.

‣ You can write a new static method in the subclass that has the same signature as the one in
the superclass, thus hiding it.

‣ You can write a subclass constructor that invokes either implicitly the default constructor of
the superclass or by directly invoking it using the keyword super().

31

INHERITANCE

super keyword

‣ Refers to the direct parent of the subclass.

‣ super.variable: for hidden fields, avoid altogether.

‣ super.instanceMethod(): for overridden methods.

‣ super(args): to call the constructor of the super class.
First line in constructor of subclass.

32

INHERITANCE

Polymorphism

‣ The ability of an object to take many forms.

‣ Static Polymorphism: Happens during method overloading, that is more than one method
have the same name but different sets of parameters (signature).

‣ Also known as Compile-Time Polymorphism, Static binding, Compile-Time binding, Early
binding

‣ Dynamic Polymorphism: Happens during method overriding, that is a method with the same
signature exists both in parent and child class. When a parent reference is used to refer to a
child object, the method that will be executed with be defined at run-time, therefore will be
the child’s overridden method.

‣ Student student = new Student();  
Person person = new Student();

‣ Also known as Run-Time Polymorphism, Dynamic binding, Run-Time binding, Late binding

33

https://medium.com/@shanikae/polymorphism-explained-simply-7294c8deeef7

INHERITANCE

Example: Animal

public class Animal {
 public int legs = 2;
 public static String species = "Animal";
 public static void testClassMethod() {
 System.out.println("The static method in Animal");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Animal");
 }
}

34

INHERITANCE

Example: Cat

public class Cat extends Animal {
 public int legs = 4;
 public static String species = "Cat";
 public static void testClassMethod() {
 System.out.println("The static method in Cat");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Cat");
 }
}  

35

INHERITANCE

Hiding vs overriding

public static void main(String[] args) {
 Cat myCat = new Cat();
 myCat.testClassMethod(); //invoking a hidden method
 myCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(myCat.legs); //accessing a hidden field
 System.out.println(myCat.species); //accessing a hidden field
}

‣ Output:

The static method in Cat
The instance method in Cat
4
Cat

WHAT YOU WERE EXPECTING, RIGHT?

36

INHERITANCE

Hiding vs overriding

public static void main(String[] args) {
 Animal yourCat = new Cat();
 yourCat.testClassMethod(); //invoking a hidden method
 yourCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(yourCat.legs); //accessing a hidden field  
 System.out.println(yourCat.species); //accessing a hidden field
}

‣ Output:

The static method in Animal
The instance method in Cat
2
Animal

???

37

INHERITANCE

Hiding vs overriding

‣ Hiding: For fields (instance+static) and methods (static) the class
is determined at compile-time. Here, the compiler sees that
yourCat is declared as Animal.

‣ Overriding: For instance methods this is determined at run-time.
At this point, we know that yourCat is of type Cat.

‣ One form of polymorphism (dynamic) .

‣ You will get a compile-time error if you attempt to change an
instance method in the superclass to a static method in the
subclass and vice-versa.

38

INHERITANCE

All classes inherit class Object

‣ Directly if they do not extend any other class, or indirectly as descendants.

‣ Object class has built-in methods that are inherited.

‣ public boolean equals (Object other)

‣ Default behavior returns true only if same object.

‣ public String toString()

‣ Returns string representation of object – default is hexadecimal.

‣ Does not print the string.

‣ Typically needs to be overridden to be useful.

‣ public int hashCode()

‣ Unique identifier defined so that if a.equals(b) then a, b have same hashCode.

‣

39

INHERITANCE

final keyword

‣ Variable: only assigned once in its declaration or in
constructor — its value cannot be changed after
initialization.

‣ E.g., static final PI = 3.14;

‣ Method: cannot be overridden by subclass.

‣ Class: cannot be extended.

40

INHERITANCE

Practice Time

public class ClassA {
 public void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public static void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

public class ClassB extends ClassA {
 public static void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

1. Which method overrides a method in the superclass?

2. Which method hides a method in the superclass?

3. What do the other methods do?

41

INHERITANCE

Answers

1. methodTwo.

2. methodFour.

3. They cause compile-time errors.
methodOne: “This static method cannot hide the instance method from ClassA”.
methodThree: “This instance method cannot override the static method from
ClassA”.

42

TEXT

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance, Interfaces, and Generics

▸ Inheritance

▸ Interfaces

▸ Generics

44

INTERFACES

Interfaces

▸ Contracts of what a class must do, not how to do it, abstracting from
implementation.

▸ Central concept in OOP.

▸ In Java, an interface is a reference type (like a class), that contains only
constants, method signatures, default methods, and static methods.

▸ A class that implements an interface is obliged to implement its methods.

▸ Method bodies exist only for default methods and static methods.

▸ Interfaces cannot be instantiated (no new keyword). They can only be
implemented by classes or extended by other interfaces.

45

INTERFACES

Example

public interface Moveable{
 int turn(Direction direction, double radius, double speed);

 default int stop(){
 speed=0;
 }
}

public class Car implements Moveable{
 int turn(Direction direction, double radius, double speed){
 //code goes here  
 }  
}

public class Bicycle implements Moveable{
 int turn(Direction direction, double radius, double speed){
 //code goes here  
 }  
}

46

INTERFACES

Interfaces

▸ A class can implement multiple interfaces.

▸ class A implements Interface1, Interface2{…}

▸ An interface can extend multiple interfaces.

▸ public interface GroupedInterface extends
Interface1,Interface2{…}

47

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance, Interfaces, and Generics

▸ Inheritance

▸ Interfaces

▸ Generics

48

GENERICS

Generics

▸ Compile-time errors can be easier to fix than run-time errors.

▸ Java introduced generics (similar to templates in C++) to help move more
bugs to compile-time (easier to debug!), eliminate casting, and improve
abstraction. E.g.,

 List list = new ArrayList();
 list.add("hello");
 String s = (String) list.get(0);

 Is now:
 List<String> list = new ArrayList<String>();  
 list.add("hello");  
 String s = list.get(0); // no cast

▸ Generics enable types (that is classes and interfaces) to be used as
parameters when defining classes, interfaces, and methods.

49

GENERICS

Formal and actual type parameters

public interface List <E> {
 void add(E x);
 Iterator<E> iterator();
}

public interface Iterator<E> {
 E next();
 boolean hasNext();
}
▸ In the invocation (e.g., List<Integer>) all occurrences

of the formal type parameters are replaced by the actual
type argument (e.g., Integer).

50

Formal type parameters

GENERICS

Generic classes

class name <T1, T2, …, Tn> {…}

▸ A type variable can be any non-primitive type (class, interface, array)

▸ E: element (common in data structures), T: type, K: key, V: value, N: number, etc.

/**  
* Generic version of the Box class.  
* https://docs.oracle.com/javase/tutorial/java/generics/types.html 
* @param <T> the type of the value being boxed  
*/

public class Box<T> {  
 private T t;  
 
 public void set(T t) { this.t = t; }  
 public T get() { return t; }  
}

‣ Invocation: Box<Integer> integerBox = new Box<Integer>();

51

GENERICS

Multiple Type Parameters Example
public interface Pair<K, V> {

 public K getKey();

 public V getValue();

}

public class OrderedPair<K, V> implements Pair<K, V> {

 private K key;

 private V value;

 public OrderedPair(K key, V value) {

 this.key = key;

 this.value = value;

 }

}

Pair<String, Integer> p1 = new OrderedPair<String, Integer>("Even", 8);

OrderedPair<String, Box<Integer>> p = new OrderedPair<String, Box<Integer>>("primes", new
Box<Integer>(...));

52

GENERICS

Generic methods

modifier (static) <T1, T2, …, Tn> return-type name(list of type parameters){…}}

▸ The type parameter’s scope is limited to the method which is

declared.

▸ Static, non-static generic methods, generic class constructors are
allowed.

▸ Type inference: allows you to invoke a generic method as an
ordinary method, without specifying a type between angle
brackets.

▸ E.g., className/objectName.genericMethod(arguments);

53

GENERICS

Example

▸ Generic method that swaps the elements of an array at
two specified indices.

public static <T> void swap(T[] a, int i, int j) {  
 T temp = a[i];  
 a[i] = a[j];  
 a[j] = temp;  
}

54

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ Interfaces and Inheritance: https://docs.oracle.com/javase/tutorial/java/IandI/index.html

▸ Generics: https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/intro.html

▸ Textbook:

▸ Pages 100-104, 122

▸ Textbook Website:

▸ Generics: https://algs4.cs.princeton.edu/13stacks/

55

Practice Problems:

▸ If you want more practice with hiding vs overriding:
http://javabypatel.blogspot.com/2016/04/java-interview-questions.html

