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TEXT

Class News

▸ Midterm scheduled for this Thursday 4/8/22 

▸ Option 1 - keep existing schedule for 4/8/22 

▸ Option 2 - postpone until Tuesday 4/12
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BEFORE INSERTION

Representation

▸ There is no representation of the links in BST 

▸ Each node is pointed to by one node, its parent.  

▸ We can use this to encode the color of the links in nodes.  

▸ True if the link from the parent is red and false if it is black. Null links are black. 
    private static final boolean RED   = true;
    private static final boolean BLACK = false;

    private Node root;     // root of the BST

    // BST helper node data type
    private class Node {
        private Key key;           // key
        private Value val;         // associated data
        private Node left, right;  // links to left and right subtrees
        private boolean color;     // color of parent link
        private int size;          // subtree count

    private boolean isRed(Node x) {
        if (x == null) return false;
        return x.color == RED;
    }
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ELEMENTARY RED-BLACK BST OPERATIONS - TO FIX TREE FROM INSERTION

Left rotation: Orient a (temporarily) right-leaning red link to lean left
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ELEMENTARY RED-BLACK BST OPERATIONS - ALSO NEED TO LEAN RIGHT

Right rotation: Orient a left-leaning red link to a (temporarily) lean right
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ELEMENTARY RED-BLACK BST OPERATIONS - ONLY CHANGE COLORS TO SPLIT

Color flip: Recolor to split a (temporary) 4-node
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INSERTION

Implementation
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▸ Only three cases: 

▸ Right child red; left child black: rotate left. 

▸ Left child red; left-left grandchild red: rotate right. 

▸ Both children red: flip colors. 
    // insert the key-value pair in the subtree rooted at h
    private Node put(Node h, Key key, Value val) { 
        if (h == null) return new Node(key, val, RED, 1);  // Insert at bottom and color red

        int cmp = key.compareTo(h.key);                    // Compare as before to traverse tree 
        if      (cmp < 0) h.left  = put(h.left,  key, val); 
        else if (cmp > 0) h.right = put(h.right, key, val); 
        else              h.val   = val;

        if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h); // Fix any right-leaning links
        if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);// 2 left red links
        if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);     // 4-node
        h.size = size(h.left) + size(h.right) + 1;

        return h;
    }



INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in ascending order.
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INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in descending order.
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INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in random order.
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INSERTION

Examples
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TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context
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MATHEMATICAL ANALYSIS

Balance in LLRB trees

▸ Height of LLRB trees is  in the worst case. Can you 
think of the worst case? 

▸ Worst case is a 2-3 tree that is all 2-nodes except that the 
left-most path is made up of 3-nodes. 

▸ All ordered operations (min, max, floor, ceiling) etc. are 
also .

≤ 2 log n

O(log n)
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PERFORMANCE

Summary for symbol table operations
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Worst case Average case

Search Insert Delete Search Insert Delete
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PERFORMANCE

Summary for symbol table operations

16

Worst case Average case
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TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context
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HISTORICAL CONTEXT

Red-black trees

▸ Why red-black? Invented at Xerox PARC, had a laser printer and 
red and black had the best contrast… 

▸ Left-leaning red-black trees [Sedgewick, 2008] 

▸ Inspired by difficulties in proper implementation of RB BSTs. 

▸ RB BSTs have been involved in lawsuit because of improper 
implementation.  

▸ Telephone service outage due to exceeding height bound 

▸ Telephone company sues database provider 
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HISTORICAL CONTEXT

Balanced trees in the wild

▸ Red-black trees are widely used as system symbol tables. 

▸ e.g., Java: java.util.TreeMap and 
java.util.TreeSet. 

▸ Other balanced BSTs: AVL, splay, randomized. 

▸ 2-3 search trees are a subset of b-trees. 

▸ See book for more. 

▸ B-trees are widely used for file systems and databases.
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TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.3 (Pages 432-447) 

▸ Website: 

▸ https://algs4.cs.princeton.edu/33balanced/

21

Practice Problems:

▸ 3.3.9-3.3.22
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TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Midterm Topics

▸ Sorting 

▸ Heaps/Priority Queues 

▸ Dictionaries 

▸ Misc 

▸ Practice Problems 

▸ End of lecture slides 

▸ Go over in midterm review during lab
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TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Selection sort 

▸ Insertion sort 

▸ Merge sort 

▸ Quick sort 

▸ Heap sort
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TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Given an array of n items, sort them in non-descending order 
based on a comparable key. 

▸ Cost model counts comparisons (calls to less()) and 
exchanges (calls to exch()) (or array accesses). 

▸ Not in place: If linear extra memory is required. 

▸ Stable: If duplicate elements stay in the same order that they 
appear in the input. 

▸ Practice: https://visualgo.net/en/sorting (minus quick sort).
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TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees 

▸ Search 

▸ Insertion 

▸ Deletion 

▸ 2-3 search trees 

▸ Left-leaning Red Black search trees
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TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees 

▸ 2-3 search trees
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TODAY’S LECTURE IN A NUTSHELL

2-3 search trees

▸ Balanced (every path from root to leaf has same length) 
search tree that follow the symmetric order. Contain 2 
nodes (one key and two children) or 3 nodes (two keys 
and three children).  

▸ Search and insertion of keys (and values) is . 

▸ A pain to implement. 

▸ Practice: https://www.cs.usfca.edu/~galles/visualization/
BTree.html (max-degree 3).

O(log n)
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TODAY’S LECTURE IN A NUTSHELL

2-3 search trees
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TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces 

▸ Iterable/Iterator Interfaces 

▸ BT Traversals
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TODAY’S LECTURE IN A NUTSHELL

Comparable Interface

▸ Interface with a single method that we need to implement: 
public int compareTo(T that) 

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w. 

▸ Returns <0 if v is smaller than w. 

▸ Returns 0 if v is equal to w. 

▸ Corresponds to natural ordering. 
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TODAY’S LECTURE IN A NUTSHELL

Comparator Interface

▸ Sometimes the natural ordering is not the type of ordering we want. 

▸ Comparator is an interface which allows us to dictate what kind of ordering we want by 
implementing the method:  
public int compare(T this, T that) 

▸ Implement it so that compare(v, w):

▸ Returns >0 if v is greater than w. 

▸ Returns <0 if v is smaller than w. 

▸ Returns 0 if v is equal to w. 

‣ public static Comparator<ClassName> reverseComparator(){
return (ClassName a, ClassName b)->{return -a.compareTo(b)};  

    }
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TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces 

▸ Iterable/Iterator Interfaces 

▸ BT Traversals
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TODAY’S LECTURE IN A NUTSHELL

Iterable<T> Interface

▸ Interface with a single method that we need to implement: 
Iterator<T> iterator() 

▸ Class becomes iterable, that is it can be traversed with a 
for-each loop. 

▸ for (String student: students){  
       System.out.println(student);  
}
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TODAY’S LECTURE IN A NUTSHELL

Iterator<T> Interface

▸ Interface with two methods that we need to implement: boolean 
hasNext() and T next(). 

▸ hasNext() checks whether there is any element we have not seen yet. 

▸ next() returns the next available element. 

▸ Always check if there are any available elements before returning the next 
one. 

▸ Typically a comparable class, has an inner class that implements Iterator. 
Outer class’s iterator method returns an instance of inner class. 

▸ Can also be implemented in a standalone class where collection to iterate 
over is passed in the constructor.
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TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces 

▸ Iterable/Iterator Interfaces 

▸ BT Traversals
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TODAY’S LECTURE IN A NUTSHELL

BT traversals

▸ Pre-order: mark root visited, left subtree, right subtree. 

▸ In-order: left subtree, mark root visited, right subtree. 

▸ Post-order: left subtree, right subtree, mark root visited. 

▸ Level-order: start at root, mark each node as visited level 
by level, from left to right.
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TODAY’S LECTURE IN A NUTSHELL

Practice Problems

▸ Problem 1 - Sorting 

▸ Problem 2 - Heaps 

▸ Problem 3 - Tree traversals 

▸ Problem 4 - Binary Trees 

▸ Problem 5 - Binary Search Trees 

▸ Problem 6 - Iterators
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TODAY’S LECTURE IN A NUTSHELL

Problem 1 - Sorting

39

▸ In the next slide, you can find a table whose first row (last column 0) contains an array 
of 18 unsorted numbers between 1 and 50. The last row (last column 6) contains the 
numbers in sorted order. The other rows show the array in some intermediate state 
during one of these five sorting algorithms: 

▸ 1-Selection sort 

▸ 2-Insertion sort 

▸ 3-Mergesort 

▸ 4-Quicksort (no initial shuffling, one partition only) 

▸ 5-Heapsort 

▸ Match each algorithm with the right row by writing its number (1-5) in the last column. 



TODAY’S LECTURE IN A NUTSHELL 40

12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15 0
11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15
10 11 12 46 20 43 42 47 44 32 16 35 40 18 41 21 28 15
10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46
43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47
11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15
10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47 6

Problem 1 - Sorting



TODAY’S LECTURE IN A NUTSHELL

Problem 2 - Heaps
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▸ Consider the following max-heap: 

 

▸ Draw the heap after you insert key 13. 

▸ Suppose you delete the maximum key from the original 
heap. Draw the heap after you delete 14.



TODAY’S LECTURE IN A NUTSHELL

Problem 3 - Tree Traversals

42

▸ Circle the correct binary tree(s) that would produce both of 
the following traversals: 

▸ Pre-order: C R B W O S T N Q 

▸ In-order: B R W O C S N T Q



TODAY’S LECTURE IN A NUTSHELL

Problem 4 - Binary Trees

43

▸ You are extending the functionality of the BinaryTree class that represents binary 
trees with the goal of counting the number of leaves. Remember that BinaryTree 
has a pointer to a root Node and the inner class Node has two pointers, left and 
left to the root nodes that correspond to its left and right subtrees.  

▸ You are given the following public method: 

  public int sumLeafTree()

    return sumLeafTree(root);

  }

‣ Please fill in the body of the following recursive method  
 
private int sumLeafTree(Node x){…}



TODAY’S LECTURE IN A NUTSHELL

Problem 5 - Binary Search Trees

44

▸ You are extending the functionality of the BST class that represents binary search trees with the 
goal of counting the number of nodes whose keys fall within a given [low, high] range. 
That is you want to count how many nodes have keys that are equal or larger than low and 
equal or smaller than high. Remember that BST has a pointer to a root Node and the inner 
class Node has two pointers, left and left to the root nodes that correspond to its left and 
right subtrees and a Comparable Key key (please ignore the value).  

▸ You are given the following public method: 

  public int countRange(Key low, Key high)

    return countRange(root, Key low, Key high);

  }

‣ Please fill in the body of the following recursive method  
 
private int countRange(Node x, Key low, Key high){…}



TODAY’S LECTURE IN A NUTSHELL

Problem 6 - Iterators

45

▸ A programmer discovers that they frequently need only the odd numbers in an arraylist of 
integers.  As a result, they decided to write a class OddIterator that implements the 
Iterator interface. Please help them implement the constructor and the hasNext() and 
next() methods so that they can retrieve the odd values, one at a time. For example, if the 
arraylist contains the elements [7, 4, 1, 3, 0], the iterator should return the values 7, 1, and 3. 
You are given the following public class: 

public class OddIterator implements Iterator<Integer> {

// The array whose odd values are to be enumerated  
private ArrayList<Integer> myArrayList; 

//any other instance variables you might need

//An iterator over the odd values of myArrayList
public OddIterator(ArrayList<Integer> myArrayList){…}

//runs in O(n) time
public boolean hasNext(){…}
 
//runs in O(1) time  
public Integer next(){…}
}
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TODAY’S LECTURE IN A NUTSHELL

Lecture 21: Hash tables

▸ Hash functions 

▸ Separate chaining 

▸ Open addressing

47

Some slides adopted from Algorithms 4th Edition or COS226



PERFORMANCE

Summary for symbol table operations

48
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HASHING: REDUCE SYMBOL TABLE TO AN ARRAY

Basic plan for implementing dictionaries using hashing

▸ Goal: Build a key-indexed array (table or hash table or hash map) to model 
dictionaries (or symbol tables) for efficient (  search). 

▸ Hash function: Method for computing array index (hash value)  
from key. 

‣ hash(“California”) = 2

▸ Issues:  

▸ Computing the hash function. 

▸ Method for checking whether two keys are equal. 

▸ How to handle collisions when two keys hash to same index. 

▸ Trade off between time and space

O(1)

49

(California, 
Sacramento)

0

1

2

3

4

‣ hash(“Texas”) = 2 ???



HASHING

Computing hash function

▸ Ideal scenario: Take any key and uniformly “scramble” it to produce a symbol table/dictionary index. 

▸ Requirements:  

▸ Consistent - equal keys must produce the same hash value. 

▸ Efficient - quick computation of hash value. 

▸ Uniform distribution - every index is equally likely for each key. 

▸ Although thoroughly researched, still problematic in practical applications. 

▸ Examples: Dictionary where keys are social security numbers. 

▸ Bad: if we choose the first three digits (geographical region and time). 

▸ Better: if we choose the last three digits. 

▸ Best: use all data. 

▸ Practical challenge: Need different approach for each key type.
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HASHING

Hashing in Java

▸ All Java classes inherit a method hashCode(), which returns an integer. 

▸ Requirement: If x.equals(y) then it should be 
x.hashCode()==y.hashCode().  

▸ Ideally: If !x.equals(y) then it should be  
x.hashCode()!=y.hashCode().  

▸ Default implementation: Memory address of x. 

▸ Need to override both equals() and hashCode() for custom types.  

▸ Already done for us for standard data types: Integer, Double, etc.
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HASHING

Equality test in Java

▸ Requirement: For any objects x, y, and z. 

▸ Reflexive: x.equals(x) is true. 

▸ Symmetric: x.equals(y) iff y.equals(x). 

▸ Transitive: if x.equals(y) and y.equals(z) then 
x.equals(z).

▸ Non-null: if x.equals(null) is false. 

▸ If you don’t override it, the default implementation checks 
whether x and y refer to the same object in memory.
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HASHING

Java implementations of equals() for user-defined types

▸ public class Date {  
     private int month;  
     private int day;  
     private int year;  
     …  
     public boolean equals(Object y) {  
         if (y == this) return true;    // same memory location  
         if (y == null) return false;   // compare with null  
         if (y.getClass() != this.getClass()) return false;  
         Date that = (Date) y;          // same object type  
         return (this.day == that.day &&  
                 this.month == that.month &&  
                 this.year == that.year);  // compare 3 ints  
     }  
}
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HASHING

General equality test recipe in Java

▸ Optimization for reference equality. 

▸ if (y == this) return true;

▸ Check against null. 

▸ if (y == null) return false;

▸ Check that two objects are of the same type. 

▸ if (y.getClass() != this.getClass()) return false;

▸ Cast them. 

▸ Date that = (Date) y;

▸ Compare each significant field. 

▸ return (this.day == that.day && this.month == that.month && this.year == that.year);

▸ If a field is a primitive type, use ==.

▸ If a field is an object, use equals().

▸ If field is an array of primitives, use Arrays.equals().

▸ If field is an array of objects, use Arrays.deepEquals().
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HASHING: JAVA LIBRARY IMPLEMENTATIONS OF PRIMITIVES

Java implementations of hashCode()

▸ public final class Integer {  
     private final int value;  
     …  
     public int hashCode() {  
          return (value);      // just return the value  
     }  
}

▸ public final class Boolean {  
     private final boolean value;  
     …  
     public int hashCode() {  
          if(value)    return 1231;   // return 2 values (true/false)  
          else return 1237;  
     }  
}
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HASHING: MAKE USE OF ALL THE DATA WE HAVE

Java implementations of hashCode() for user-defined types

▸ public class Date {  
     private int month;  
     private int day;  
     private int year;  
     …  
     public int hashCode() {  
         int hash = 1;  
         hash = 31*hash + ((Integer) month).hashCode();  
         hash = 31*hash + ((Integer) day).hashCode();  
         hash = 31*hash + ((Integer) year).hashCode();  
         return hash;  
         //could be also written as  
         //return Objects.hash(month, day, year); 
     }  
}

56

31x+y rule



HASHING

General hash code recipe in Java

▸ Combine each significant field using the 31x+y rule. 

▸ Shortcut 1: use Objects.hash() for all fields (except arrays). 

▸ Shortcut 2: use Arrays.hashCode() for primitive arrays. 

▸ Shortcut 3: use Arrays.deepHashCode() for object arrays.

57



HASHING

Modular hashing

▸ Hash code: a 32-bit int between  and  

▸ Hash function: an int between 0 and , where  is the hash table size (typically a prime number or power of 2). 

▸ The class that implements the dictionary of size  should implement a hash function. Examples: 

▸ private int hash (Key key){  
   return key.hashCode() % m;  
}

▸ Bug! Might map to negative number. 

▸ private int hash (Key key){  
   return Math.abs(key.hashCode()) % m;  
}

▸ Very unlikely bug. For a hash code of , Math.abs will return a negative number! 

▸ Largest positive number representable with 32 bits is , abs( ) =   

▸ private int hash (Key key){  
   return (key.hashCode() & 0x7fffffff) % m;  
}

▸ Correct. Bitwise AND with 0 followed by 31 1s gives us the positive components of the integer. 

▸ You will learn bit-wise operators in CS181OR

−231 231 − 1

m − 1 m

m

−231

231 − 1 −231 −231
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HASHING

Uniform hashing assumption

▸ Uniform hashing assumption: Each key is equally likely to hash to an 
integer between  and .  

▸ Mathematical model: balls & bins. Toss  balls uniformly at random into 
 bins.  

▸ Bad news: Expect two balls in the same bin after ~  tosses.  

▸ Birthday problem: In a random group of 23 or more people, more 
likely than not that two people will share the same birthday. 

▸ Good news: load balancing 

▸ When , the number of balls in each bin is “likely close” to .

0 m − 1

n
m

(πm /2)

n > > m n/m
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TODAY’S LECTURE IN A NUTSHELL

Lecture 26-27: Hash tables

▸ Hash functions 

▸ Separate chaining 

▸ Open addressing
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SEPARATE CHAINING - COLLISION RESOLUTION

Separate/External Chaining (Closed Addressing)

▸ Use an array of  distinct lists 
[H.P. Luhn, IBM 1953]. 

▸ Hash: Map key to integer  between  and 
. 

▸ Insert: Put at front of i-th chain (if not 
already there). 

▸ Search: Need to only search the i-th chain.

m < n

i 0
m − 1

61



SEPARATE CHAINING 

Separate Chaining Example

62

▸ Let’s assume we implement a dictionary using hashing and separate chaining for 
collisions. 

▸ The size of the table is 5, that is . 

▸ We will hash the keys S, E, A, R, C, H, E, X, A, M, P, L, E where I will provide you with 
their hash values. 

▸ Every time we hash a key, we go to the chain attached to that index and traverse 
the linked list. 

▸ If we find a node with the same key we want to insert, we just update its 
corresponding value. 

▸ If no node contains our key, we insert the key-value pair at the head of the 
chain.

m = 5



SEPARATE CHAINING 

Separate Chaining Example
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0

1

2

3

4

Next step: Insert (S, 0)



SEPARATE CHAINING 

Separate Chaining Example
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Key Hash Value

S 2 0
0

1

2 S, 0

3

4

Next step: Insert (E, 1)



SEPARATE CHAINING 

Separate Chaining Example
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Key Hash Value

S 2 0
E 0 1

0 E, 1

1

2 S, 0

3

4

Next step: Insert (A, 2)



SEPARATE CHAINING 

Separate Chaining Example
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Key Hash Value
S 2 0
E 0 1
A 0 2

0 A, 2 E, 1

1

2 S, 0

3

4

Next step: Insert (R, 3)



SEPARATE CHAINING 

Separate Chaining Example
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Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3

0 A, 2 E, 1

1

2 S, 0

3

4 R, 3

Next step: Insert (C, 4)



SEPARATE CHAINING 

Separate Chaining Example
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Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4

0 A, 2 E, 1

1

2 S, 0

3

4 C, 4 R, 3

Next step: Insert (H, 5)



SEPARATE CHAINING 

Separate Chaining Example
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Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5

0 A, 2 E, 1

1

2 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (E, 6)



SEPARATE CHAINING 

Separate Chaining Example
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Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6

0 A, 2 E, 6

1

2 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (X, 7)



SEPARATE CHAINING 

Separate Chaining Example
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Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7

0 A, 2 E, 6

1

2 X, 7 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (A, 8)



SEPARATE CHAINING 

Separate Chaining Example

72

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8

0 A, 8 E, 6

1

2 X, 7 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (M, 9)



SEPARATE CHAINING 

Separate Chaining Example

73

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9

0 A, 8 E, 6

1

2 X, 7 S, 0

3

4 M, 9 H, 5 C, 4 R,  3

Next step: Insert (P, 10)



SEPARATE CHAINING 

Separate Chaining Example

74

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10

0 A, 8 E, 6

1

2 X, 7 S, 0

3 P, 10

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (L, 11)



SEPARATE CHAINING 

Separate Chaining Example
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Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10
L 3 11

0 A, 8 E, 6

1

2 X, 7 S, 0

3 L, 11 P, 10

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (E, 12)



SEPARATE CHAINING 

Separate Chaining Example
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Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10
L 3 11
E 0 12

0 A, 8 E, 12

1

2 X, 7 S, 0

3 L, 11 P, 10

4 M, 9 H, 5 C, 4 R, 3



SEPARATE CHAINING 

Practice Time

77

▸ Assume a dictionary implemented using hashing and separate 
chaining for handling collisions.  

▸ Let  be the hash table size. 

▸ For simplicity, we will assume that keys are integers and that 
the hash value for each key  is calculated as . 

▸ Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4), 
(47,5) and  show the resulting dictionary.

m = 7

k h(k) = k % m



0 14, 3 28, 2

1

2 9, 4

3 3, 1

4

5 47, 5

6

SEPARATE CHAINING 

Answer

78

Key Hash Value

47 5 0

3 3 1

28 0 2

14 0 3

9 2 4

47 5 5



SEPARATE CHAINING 

Symbol table with separate chaining implementation
public class SeparateChainingLiteHashST<Key, Value> {

    private int m = 128;  // hash table size
    private Node[] st = new Node[m];        
    // array of linked-list symbol tables. Node is inner class that holds keys and values of type Object 
 
    public Value get(Key key) {
        int i = hash(key);                               // compute hash value - bitwise & and mod
        for (Node x = st[i]; x != null; x = x.next) {     // traverse linked list  
            if (key.equals(x.key)) return (Value) x.val; // return when found
        }  
        return null;
    }  
 
    public void put(Key key, Value val) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next) {      // search for existing node, if found update  
            if (key.equals(x.key)) {  
                x.val = val;  
                return;
            }  
        }  
        st[i] = new Node(key, val, st[i];                // create new node at head of linked list
    }                                                    // link to old head of list
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SEPARATE CHAINING

Analysis of Separate Chaining

▸ Under uniform hashing assumption, if  keys to hash in a table 
with size , the length of each chain is ~ .  

▸ Consequence: Number of probes (calls to either equals() or 
hashCode()) for search/insert is proportional to  (  times 
faster than sequential search in a single chain). 

▸  too large -> too many empty chains. 

▸  too small -> chains too long. 

▸ Typical choice: ~  -> constant time per operation.

n
m n/m

n/m m

m

m

m 1/5n

80



SEPARATE CHAINING

Resizing in a separate-chaining hash table

▸ Goal: Average length of chain  = constant lookup. 

▸ Double hash table size when . 

▸ Halve hash table size when . 

▸ Need to rehash all keys when resizing (hashCode value for 
key does not change, but hash value changes as it depends 
on table size).

n/m

n/m ≥ 8

n/m ≤ 2
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SEPARATE CHAINING

Parting thoughts about separate-chaining

▸ Deletion: Easy! Hash key, find its chain, search for a node that 
contains it and remove it. 

▸ Ordered operations: not supported. Instead, look into 
(balanced) BSTs. 

▸ Fastest and most widely used dictionary implementation for 
applications where key order is not important.
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TODAY’S LECTURE IN A NUTSHELL

Lecture 26-27: Hash tables

▸ Hash functions 

▸ Separate chaining 

▸ Open addressing
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OPEN ADDRESSING: COLLISION RESOLUTION USING AN ARRAY

Linear Probing

▸ Belongs in the open addressing family. 

▸ Alternate approach to handle collisions when 
. 

▸ Maintain keys and values in two parallel arrays. 

▸ When a new key collides, find next empty slot 
and put it there. 

▸ If the array is full, the search would not 
terminate.

m > n
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OPEN ADDRESSING

Linear Probing

▸ Hash: Map key to integer  between  and . 

▸ Insert: Put at index  if free. If not, try , , etc.  

▸ Search: Search table index . If occupied but no match, try , , etc 

▸ If you find a gap then you know that it does not exist. 

▸ Table size  must be greater than the number of key-value pairs .

i 0 m − 1

i i + 1 i + 2

i i + 1 i + 2

m n
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OPEN ADDRESSING

Linear Probing Example
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OPEN ADDRESSING

Practice time

88

▸ Assume a dictionary implemented using hashing and linear 
probing for handling collisions.  

▸ Let  be the hash table size. 

▸ For simplicity, we will assume that keys are integers and that 
the hash value for each key  is calculated as . 

▸ Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4), 
(47,5) and  show the resulting dictionary.

m = 7

k h(k) = k % m



Keys 28 14 9 3 47

Values 2 3 2 1 5

Indices 0 1 2 3 4 5 6

OPEN ADDRESSING

Answer

89

Key Hash Value
47 5 0
3 3 1

28 0 2
14 0 3
9 2 4

47 5 5



OPEN ADDRESSING

Symbol table with linear probing implementation

public class LinearProbingHashST<Key, Value> {

    private int m = 32768;  // hash table size
    private Value[] Vals = (Value[]) new Object[m]; // parallel arrays  
    private Key[] Vals = (Key[]) new Object[m];        
     
    public Value get(Key key) {
        for (int i = hash(key); keys[i] != null; i = (i+1) % m) { // start at hash  
            if (key.equals(keys[i])) return vals[i];              // increment by 1, wrap  
        }                                                           
        return null;
    }  
 
    public void put(Key key, Value val) {
        int i;
        for (int i = hash(key); keys[i] != null; i = (i+1) % m) {  // start at hash  
            if (key.equals(keys[i])){                             // increment by 1, wrap  
                break;
            }  
        }  
        keys[i] = key;  
        vals[i] = val;
    }
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OPEN ADDRESSING

Primary clustering

▸ Cluster: a contiguous block of keys. 

▸ Observation: new keys likely to hash in middle of big clusters.
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OPEN ADDRESSING

Analysis of Linear Probing

▸ Proposition: Under uniform hashing assumption, the average number of probes in a linear-
probing hash table of size  that contains n keys where  is at most 

▸  for search hits and 

▸  for search misses and insertions. 

▸ [Knuth 1963],   < 1 what happens when alpha is 1/2? Close to 1 say 0.9? 

▸ Parameters:  

▸  too large -> too many empty array entries. 

▸  too small -> search time becomes too long. 

▸ Typical choice for load factor: ~  -> constant time per operation.

m n = αm

1/2(1 +
1

1 − a
)

1/2(1 +
1

(1 − a)2
)

α

m

m

α = n /m 1/2
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OPEN ADDRESSING

Resizing in a linear probing hash table

▸ Goal: Fullness of array (load factor) . 

▸ Double hash table size when . 

▸ Halve hash table size when . 

▸ Need to rehash all keys when resizing (hash code does not 
change, but hash value changes as it depends on table 
size).  

▸ Deletion not straightforward.

n/m ≤ 1/2

n/m ≥ 1/2

n/m ≤ 1/8

94



OPEN ADDRESSING

Quadratic Probing

▸ Another open addressing technique that aims to reduce 
primary clustering by taking the original hash index and 
adding successive values of an arbitrary quadratic polynomial 
until an open slot is found. 

▸ Modify the probe sequence so that 
, where  is the -th time 

we have had a collision for the given index. 

▸ When , then quadratic probing reduces to linear 
probing.

h(k, i) = (h(k) + c1i + c2i2) % m, c2 ≠ 0 i i

c2 = 0

95



OPEN ADDRESSING

Quadratic probing - Example

▸  and . 

▸ Assume , and key-value pairs to insert: (17,0), (33,1), 
(18,2), (20,3), (44,4), (11,5), (19,6), (7,7).

h(k) = k % m h(k, i) = (h(k) + i2) % m

m = 13

96

0 1 2 3 4 5 6 7 8 9 10 11 12

17

17 33

17 18 33

17 18 33 20 Collision!

17 18 44 33 20 Collision!

17 18 44 33 20 11

17 18 44 33 20 19 11 Collision!

7 17 18 44 33 20 19 11

(17,0)

(33,1)

(18,2)

(20,3)

(44,4)

(11,5)

(19,6)

(7,7) Collision!



OPEN ADDRESSING

Summary for dictionary/symbol table operations

97

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search tree

Separate 
chaining

Open 
addressing

n n n log n

n n n 1

log n log n

11

n n n 111

log n log n log nlog n log n log n



OPEN ADDRESSING

Hash tables vs balanced search trees

▸ Hash tables:  

▸ Simpler to code. 

▸ No effective alternative of unordered keys. 

▸ Faster for simple keys (a few arithmetic operations versus  compares). 

▸ Balanced search trees:  

▸ Stronger performance guarantee. 

▸ Support for ordered symbol table operations. 

▸ Easier to implement compareTo() than hashCode().  

▸ Java includes both:  

▸ Balanced search trees: java.util.TreeMap, java.util.TreeSet. 

▸ Hash tables: java.util.HashMap, java.util.IdentityHashMap.

log n
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TODAY’S LECTURE IN A NUTSHELL

Lecture 26-27: Hash tables

▸ Hash functions 

▸ Separate chaining 

▸ Open addressing
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.4 (Pages 458-477) 

▸ Website: 

▸ https://algs4.cs.princeton.edu/34hash/ 

▸ Visualization: 

▸ https://visualgo.net/en/hashtable

100

Practice Problems:

▸ 3.4.1-3.4.13


