
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

21: HashTables

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Tom Yeh
he/him/his

TEXT

Class News

▸ Midterm scheduled for this Thursday 4/8/22

▸ Option 1 - keep existing schedule for 4/8/22

▸ Option 2 - postpone until Tuesday 4/12

2

BEFORE INSERTION

Representation

▸ There is no representation of the links in BST

▸ Each node is pointed to by one node, its parent.

▸ We can use this to encode the color of the links in nodes.

▸ True if the link from the parent is red and false if it is black. Null links are black.
 private static final boolean RED = true;
 private static final boolean BLACK = false;

 private Node root; // root of the BST

 // BST helper node data type
 private class Node {
 private Key key; // key
 private Value val; // associated data
 private Node left, right; // links to left and right subtrees
 private boolean color; // color of parent link
 private int size; // subtree count

 private boolean isRed(Node x) {
 if (x == null) return false;
 return x.color == RED;
 }

3

ELEMENTARY RED-BLACK BST OPERATIONS - TO FIX TREE FROM INSERTION

Left rotation: Orient a (temporarily) right-leaning red link to lean left

4

ELEMENTARY RED-BLACK BST OPERATIONS - ALSO NEED TO LEAN RIGHT

Right rotation: Orient a left-leaning red link to a (temporarily) lean right

5

ELEMENTARY RED-BLACK BST OPERATIONS - ONLY CHANGE COLORS TO SPLIT

Color flip: Recolor to split a (temporary) 4-node

6

7

INSERTION

Implementation

8

▸ Only three cases:

▸ Right child red; left child black: rotate left.

▸ Left child red; left-left grandchild red: rotate right.

▸ Both children red: flip colors.
 // insert the key-value pair in the subtree rooted at h
 private Node put(Node h, Key key, Value val) {
 if (h == null) return new Node(key, val, RED, 1); // Insert at bottom and color red

 int cmp = key.compareTo(h.key); // Compare as before to traverse tree
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else h.val = val;

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); // Fix any right-leaning links
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);// 2 left red links
 if (isRed(h.left) && isRed(h.right)) flipColors(h); // 4-node
 h.size = size(h.left) + size(h.right) + 1;

 return h;
 }

INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in ascending order.

9

INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in descending order.

10

INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in random order.

11

INSERTION

Examples

12

TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

13

MATHEMATICAL ANALYSIS

Balance in LLRB trees

▸ Height of LLRB trees is in the worst case. Can you
think of the worst case?

▸ Worst case is a 2-3 tree that is all 2-nodes except that the
left-most path is made up of 3-nodes.

▸ All ordered operations (min, max, floor, ceiling) etc. are
also .

≤ 2 log n

O(log n)

14

PERFORMANCE

Summary for symbol table operations

15

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search
tree

Red-black
BSTs

n n n 1.39 log n n

c log n

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

PERFORMANCE

Summary for symbol table operations

16

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential
search

(unordered
Binary search

(ordered
array)

BST

2-3 search
tree

Red-black
BSTs

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n ?

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

17

HISTORICAL CONTEXT

Red-black trees

▸ Why red-black? Invented at Xerox PARC, had a laser printer and
red and black had the best contrast…

▸ Left-leaning red-black trees [Sedgewick, 2008]

▸ Inspired by difficulties in proper implementation of RB BSTs.

▸ RB BSTs have been involved in lawsuit because of improper
implementation.

▸ Telephone service outage due to exceeding height bound

▸ Telephone company sues database provider

18

HISTORICAL CONTEXT

Balanced trees in the wild

▸ Red-black trees are widely used as system symbol tables.

▸ e.g., Java: java.util.TreeMap and
java.util.TreeSet.

▸ Other balanced BSTs: AVL, splay, randomized.

▸ 2-3 search trees are a subset of b-trees.

▸ See book for more.

▸ B-trees are widely used for file systems and databases.

19

TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

20

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.3 (Pages 432-447)

▸ Website:

▸ https://algs4.cs.princeton.edu/33balanced/

21

Practice Problems:

▸ 3.3.9-3.3.22

TEXT 22

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Midterm Topics

▸ Sorting

▸ Heaps/Priority Queues

▸ Dictionaries

▸ Misc

▸ Practice Problems

▸ End of lecture slides

▸ Go over in midterm review during lab

23

TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Selection sort

▸ Insertion sort

▸ Merge sort

▸ Quick sort

▸ Heap sort

24

TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Given an array of n items, sort them in non-descending order
based on a comparable key.

▸ Cost model counts comparisons (calls to less()) and
exchanges (calls to exch()) (or array accesses).

▸ Not in place: If linear extra memory is required.

▸ Stable: If duplicate elements stay in the same order that they
appear in the input.

▸ Practice: https://visualgo.net/en/sorting (minus quick sort).

25

TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees

▸ Search

▸ Insertion

▸ Deletion

▸ 2-3 search trees

▸ Left-leaning Red Black search trees

26

TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees

▸ 2-3 search trees

27

TODAY’S LECTURE IN A NUTSHELL

2-3 search trees

▸ Balanced (every path from root to leaf has same length)
search tree that follow the symmetric order. Contain 2
nodes (one key and two children) or 3 nodes (two keys
and three children).

▸ Search and insertion of keys (and values) is .

▸ A pain to implement.

▸ Practice: https://www.cs.usfca.edu/~galles/visualization/
BTree.html (max-degree 3).

O(log n)

28

TODAY’S LECTURE IN A NUTSHELL

2-3 search trees

29

TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces

▸ Iterable/Iterator Interfaces

▸ BT Traversals

30

TODAY’S LECTURE IN A NUTSHELL

Comparable Interface

▸ Interface with a single method that we need to implement:
public int compareTo(T that)

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w.

▸ Returns <0 if v is smaller than w.

▸ Returns 0 if v is equal to w.

▸ Corresponds to natural ordering.

31

TODAY’S LECTURE IN A NUTSHELL

Comparator Interface

▸ Sometimes the natural ordering is not the type of ordering we want.

▸ Comparator is an interface which allows us to dictate what kind of ordering we want by
implementing the method:
public int compare(T this, T that)

▸ Implement it so that compare(v, w):

▸ Returns >0 if v is greater than w.

▸ Returns <0 if v is smaller than w.

▸ Returns 0 if v is equal to w.

‣ public static Comparator<ClassName> reverseComparator(){
return (ClassName a, ClassName b)->{return -a.compareTo(b)};  

 }

32

TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces

▸ Iterable/Iterator Interfaces

▸ BT Traversals

33

TODAY’S LECTURE IN A NUTSHELL

Iterable<T> Interface

▸ Interface with a single method that we need to implement:
Iterator<T> iterator()

▸ Class becomes iterable, that is it can be traversed with a
for-each loop.

▸ for (String student: students){  
 System.out.println(student);  
}

34

TODAY’S LECTURE IN A NUTSHELL

Iterator<T> Interface

▸ Interface with two methods that we need to implement: boolean
hasNext() and T next().

▸ hasNext() checks whether there is any element we have not seen yet.

▸ next() returns the next available element.

▸ Always check if there are any available elements before returning the next
one.

▸ Typically a comparable class, has an inner class that implements Iterator.
Outer class’s iterator method returns an instance of inner class.

▸ Can also be implemented in a standalone class where collection to iterate
over is passed in the constructor.

35

TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces

▸ Iterable/Iterator Interfaces

▸ BT Traversals

36

TODAY’S LECTURE IN A NUTSHELL

BT traversals

▸ Pre-order: mark root visited, left subtree, right subtree.

▸ In-order: left subtree, mark root visited, right subtree.

▸ Post-order: left subtree, right subtree, mark root visited.

▸ Level-order: start at root, mark each node as visited level
by level, from left to right.

37

TODAY’S LECTURE IN A NUTSHELL

Practice Problems

▸ Problem 1 - Sorting

▸ Problem 2 - Heaps

▸ Problem 3 - Tree traversals

▸ Problem 4 - Binary Trees

▸ Problem 5 - Binary Search Trees

▸ Problem 6 - Iterators

38

TODAY’S LECTURE IN A NUTSHELL

Problem 1 - Sorting

39

▸ In the next slide, you can find a table whose first row (last column 0) contains an array
of 18 unsorted numbers between 1 and 50. The last row (last column 6) contains the
numbers in sorted order. The other rows show the array in some intermediate state
during one of these five sorting algorithms:

▸ 1-Selection sort

▸ 2-Insertion sort

▸ 3-Mergesort

▸ 4-Quicksort (no initial shuffling, one partition only)

▸ 5-Heapsort

▸ Match each algorithm with the right row by writing its number (1-5) in the last column.

TODAY’S LECTURE IN A NUTSHELL 40

12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15 0
11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15
10 11 12 46 20 43 42 47 44 32 16 35 40 18 41 21 28 15
10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46
43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47
11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15
10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47 6

Problem 1 - Sorting

TODAY’S LECTURE IN A NUTSHELL

Problem 2 - Heaps

41

▸ Consider the following max-heap:

▸ Draw the heap after you insert key 13.

▸ Suppose you delete the maximum key from the original
heap. Draw the heap after you delete 14.

TODAY’S LECTURE IN A NUTSHELL

Problem 3 - Tree Traversals

42

▸ Circle the correct binary tree(s) that would produce both of
the following traversals:

▸ Pre-order: C R B W O S T N Q

▸ In-order: B R W O C S N T Q

TODAY’S LECTURE IN A NUTSHELL

Problem 4 - Binary Trees

43

▸ You are extending the functionality of the BinaryTree class that represents binary
trees with the goal of counting the number of leaves. Remember that BinaryTree
has a pointer to a root Node and the inner class Node has two pointers, left and
left to the root nodes that correspond to its left and right subtrees.

▸ You are given the following public method:

 public int sumLeafTree()

 return sumLeafTree(root);

 }

‣ Please fill in the body of the following recursive method

private int sumLeafTree(Node x){…}

TODAY’S LECTURE IN A NUTSHELL

Problem 5 - Binary Search Trees

44

▸ You are extending the functionality of the BST class that represents binary search trees with the
goal of counting the number of nodes whose keys fall within a given [low, high] range.
That is you want to count how many nodes have keys that are equal or larger than low and
equal or smaller than high. Remember that BST has a pointer to a root Node and the inner
class Node has two pointers, left and left to the root nodes that correspond to its left and
right subtrees and a Comparable Key key (please ignore the value).

▸ You are given the following public method:

 public int countRange(Key low, Key high)

 return countRange(root, Key low, Key high);

 }

‣ Please fill in the body of the following recursive method

private int countRange(Node x, Key low, Key high){…}

TODAY’S LECTURE IN A NUTSHELL

Problem 6 - Iterators

45

▸ A programmer discovers that they frequently need only the odd numbers in an arraylist of
integers. As a result, they decided to write a class OddIterator that implements the
Iterator interface. Please help them implement the constructor and the hasNext() and
next() methods so that they can retrieve the odd values, one at a time. For example, if the
arraylist contains the elements [7, 4, 1, 3, 0], the iterator should return the values 7, 1, and 3.
You are given the following public class:

public class OddIterator implements Iterator<Integer> {

// The array whose odd values are to be enumerated  
private ArrayList<Integer> myArrayList;

//any other instance variables you might need

//An iterator over the odd values of myArrayList
public OddIterator(ArrayList<Integer> myArrayList){…}

//runs in O(n) time
public boolean hasNext(){…}
 
//runs in O(1) time  
public Integer next(){…}
}

TEXT 46

TODAY’S LECTURE IN A NUTSHELL

Lecture 21: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

47

Some slides adopted from Algorithms 4th Edition or COS226

PERFORMANCE

Summary for symbol table operations

48

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential
search

(unordered
Binary search

(ordered
array)

BST

2-3 search
tree

Red-black
BSTs

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n ?

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

HASHING: REDUCE SYMBOL TABLE TO AN ARRAY

Basic plan for implementing dictionaries using hashing

▸ Goal: Build a key-indexed array (table or hash table or hash map) to model
dictionaries (or symbol tables) for efficient (search).

▸ Hash function: Method for computing array index (hash value)
from key.

‣ hash(“California”) = 2

▸ Issues:

▸ Computing the hash function.

▸ Method for checking whether two keys are equal.

▸ How to handle collisions when two keys hash to same index.

▸ Trade off between time and space

O(1)

49

(California,
Sacramento)

0

1

2

3

4

‣ hash(“Texas”) = 2 ???

HASHING

Computing hash function

▸ Ideal scenario: Take any key and uniformly “scramble” it to produce a symbol table/dictionary index.

▸ Requirements:

▸ Consistent - equal keys must produce the same hash value.

▸ Efficient - quick computation of hash value.

▸ Uniform distribution - every index is equally likely for each key.

▸ Although thoroughly researched, still problematic in practical applications.

▸ Examples: Dictionary where keys are social security numbers.

▸ Bad: if we choose the first three digits (geographical region and time).

▸ Better: if we choose the last three digits.

▸ Best: use all data.

▸ Practical challenge: Need different approach for each key type.

50

HASHING

Hashing in Java

▸ All Java classes inherit a method hashCode(), which returns an integer.

▸ Requirement: If x.equals(y) then it should be
x.hashCode()==y.hashCode().

▸ Ideally: If !x.equals(y) then it should be
x.hashCode()!=y.hashCode().

▸ Default implementation: Memory address of x.

▸ Need to override both equals() and hashCode() for custom types.

▸ Already done for us for standard data types: Integer, Double, etc.

51

HASHING

Equality test in Java

▸ Requirement: For any objects x, y, and z.

▸ Reflexive: x.equals(x) is true.

▸ Symmetric: x.equals(y) iff y.equals(x).

▸ Transitive: if x.equals(y) and y.equals(z) then
x.equals(z).

▸ Non-null: if x.equals(null) is false.

▸ If you don’t override it, the default implementation checks
whether x and y refer to the same object in memory.

52

HASHING

Java implementations of equals() for user-defined types

▸ public class Date {  
 private int month;  
 private int day;  
 private int year;  
 …  
 public boolean equals(Object y) {  
 if (y == this) return true; // same memory location  
 if (y == null) return false; // compare with null  
 if (y.getClass() != this.getClass()) return false;  
 Date that = (Date) y; // same object type  
 return (this.day == that.day &&  
 this.month == that.month &&  
 this.year == that.year); // compare 3 ints  
 }  
}

53

HASHING

General equality test recipe in Java

▸ Optimization for reference equality.

▸ if (y == this) return true;

▸ Check against null.

▸ if (y == null) return false;

▸ Check that two objects are of the same type.

▸ if (y.getClass() != this.getClass()) return false;

▸ Cast them.

▸ Date that = (Date) y;

▸ Compare each significant field.

▸ return (this.day == that.day && this.month == that.month && this.year == that.year);

▸ If a field is a primitive type, use ==.

▸ If a field is an object, use equals().

▸ If field is an array of primitives, use Arrays.equals().

▸ If field is an array of objects, use Arrays.deepEquals().

54

HASHING: JAVA LIBRARY IMPLEMENTATIONS OF PRIMITIVES

Java implementations of hashCode()

▸ public final class Integer {  
 private final int value;  
 …  
 public int hashCode() {  
 return (value); // just return the value  
 }  
}

▸ public final class Boolean {  
 private final boolean value;  
 …  
 public int hashCode() {  
 if(value) return 1231; // return 2 values (true/false)  
 else return 1237;  
 }  
}

55

HASHING: MAKE USE OF ALL THE DATA WE HAVE

Java implementations of hashCode() for user-defined types

▸ public class Date {  
 private int month;  
 private int day;  
 private int year;  
 …  
 public int hashCode() {  
 int hash = 1;  
 hash = 31*hash + ((Integer) month).hashCode();  
 hash = 31*hash + ((Integer) day).hashCode();  
 hash = 31*hash + ((Integer) year).hashCode();  
 return hash;  
 //could be also written as  
 //return Objects.hash(month, day, year); 
 }  
}

56

31x+y rule

HASHING

General hash code recipe in Java

▸ Combine each significant field using the 31x+y rule.

▸ Shortcut 1: use Objects.hash() for all fields (except arrays).

▸ Shortcut 2: use Arrays.hashCode() for primitive arrays.

▸ Shortcut 3: use Arrays.deepHashCode() for object arrays.

57

HASHING

Modular hashing

▸ Hash code: a 32-bit int between and

▸ Hash function: an int between 0 and , where is the hash table size (typically a prime number or power of 2).

▸ The class that implements the dictionary of size should implement a hash function. Examples:

▸ private int hash (Key key){  
 return key.hashCode() % m;  
}

▸ Bug! Might map to negative number.

▸ private int hash (Key key){  
 return Math.abs(key.hashCode()) % m;  
}

▸ Very unlikely bug. For a hash code of , Math.abs will return a negative number!

▸ Largest positive number representable with 32 bits is , abs() =

▸ private int hash (Key key){  
 return (key.hashCode() & 0x7fffffff) % m;  
}

▸ Correct. Bitwise AND with 0 followed by 31 1s gives us the positive components of the integer.

▸ You will learn bit-wise operators in CS181OR

−231 231 − 1

m − 1 m

m

−231

231 − 1 −231 −231

58

HASHING

Uniform hashing assumption

▸ Uniform hashing assumption: Each key is equally likely to hash to an
integer between and .

▸ Mathematical model: balls & bins. Toss balls uniformly at random into
 bins.

▸ Bad news: Expect two balls in the same bin after ~ tosses.

▸ Birthday problem: In a random group of 23 or more people, more
likely than not that two people will share the same birthday.

▸ Good news: load balancing

▸ When , the number of balls in each bin is “likely close” to .

0 m − 1

n
m

(πm /2)

n > > m n/m

59

TODAY’S LECTURE IN A NUTSHELL

Lecture 26-27: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

60

SEPARATE CHAINING - COLLISION RESOLUTION

Separate/External Chaining (Closed Addressing)

▸ Use an array of distinct lists
[H.P. Luhn, IBM 1953].

▸ Hash: Map key to integer between and
.

▸ Insert: Put at front of i-th chain (if not
already there).

▸ Search: Need to only search the i-th chain.

m < n

i 0
m − 1

61

SEPARATE CHAINING

Separate Chaining Example

62

▸ Let’s assume we implement a dictionary using hashing and separate chaining for
collisions.

▸ The size of the table is 5, that is .

▸ We will hash the keys S, E, A, R, C, H, E, X, A, M, P, L, E where I will provide you with
their hash values.

▸ Every time we hash a key, we go to the chain attached to that index and traverse
the linked list.

▸ If we find a node with the same key we want to insert, we just update its
corresponding value.

▸ If no node contains our key, we insert the key-value pair at the head of the
chain.

m = 5

SEPARATE CHAINING

Separate Chaining Example

63

0

1

2

3

4

Next step: Insert (S, 0)

SEPARATE CHAINING

Separate Chaining Example

64

Key Hash Value

S 2 0
0

1

2 S, 0

3

4

Next step: Insert (E, 1)

SEPARATE CHAINING

Separate Chaining Example

65

Key Hash Value

S 2 0
E 0 1

0 E, 1

1

2 S, 0

3

4

Next step: Insert (A, 2)

SEPARATE CHAINING

Separate Chaining Example

66

Key Hash Value
S 2 0
E 0 1
A 0 2

0 A, 2 E, 1

1

2 S, 0

3

4

Next step: Insert (R, 3)

SEPARATE CHAINING

Separate Chaining Example

67

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3

0 A, 2 E, 1

1

2 S, 0

3

4 R, 3

Next step: Insert (C, 4)

SEPARATE CHAINING

Separate Chaining Example

68

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4

0 A, 2 E, 1

1

2 S, 0

3

4 C, 4 R, 3

Next step: Insert (H, 5)

SEPARATE CHAINING

Separate Chaining Example

69

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5

0 A, 2 E, 1

1

2 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (E, 6)

SEPARATE CHAINING

Separate Chaining Example

70

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6

0 A, 2 E, 6

1

2 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (X, 7)

SEPARATE CHAINING

Separate Chaining Example

71

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7

0 A, 2 E, 6

1

2 X, 7 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (A, 8)

SEPARATE CHAINING

Separate Chaining Example

72

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8

0 A, 8 E, 6

1

2 X, 7 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (M, 9)

SEPARATE CHAINING

Separate Chaining Example

73

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9

0 A, 8 E, 6

1

2 X, 7 S, 0

3

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (P, 10)

SEPARATE CHAINING

Separate Chaining Example

74

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10

0 A, 8 E, 6

1

2 X, 7 S, 0

3 P, 10

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (L, 11)

SEPARATE CHAINING

Separate Chaining Example

75

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10
L 3 11

0 A, 8 E, 6

1

2 X, 7 S, 0

3 L, 11 P, 10

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (E, 12)

SEPARATE CHAINING

Separate Chaining Example

76

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10
L 3 11
E 0 12

0 A, 8 E, 12

1

2 X, 7 S, 0

3 L, 11 P, 10

4 M, 9 H, 5 C, 4 R, 3

SEPARATE CHAINING

Practice Time

77

▸ Assume a dictionary implemented using hashing and separate
chaining for handling collisions.

▸ Let be the hash table size.

▸ For simplicity, we will assume that keys are integers and that
the hash value for each key is calculated as .

▸ Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4),
(47,5) and show the resulting dictionary.

m = 7

k h(k) = k % m

0 14, 3 28, 2

1

2 9, 4

3 3, 1

4

5 47, 5

6

SEPARATE CHAINING

Answer

78

Key Hash Value

47 5 0

3 3 1

28 0 2

14 0 3

9 2 4

47 5 5

SEPARATE CHAINING

Symbol table with separate chaining implementation
public class SeparateChainingLiteHashST<Key, Value> {

 private int m = 128; // hash table size
 private Node[] st = new Node[m];  
 // array of linked-list symbol tables. Node is inner class that holds keys and values of type Object 
 
 public Value get(Key key) {
 int i = hash(key); // compute hash value - bitwise & and mod
 for (Node x = st[i]; x != null; x = x.next) { // traverse linked list  
 if (key.equals(x.key)) return (Value) x.val; // return when found
 }  
 return null;
 }  
 
 public void put(Key key, Value val) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next) { // search for existing node, if found update  
 if (key.equals(x.key)) {  
 x.val = val;  
 return;
 }  
 }  
 st[i] = new Node(key, val, st[i]; // create new node at head of linked list
 } // link to old head of list

79

SEPARATE CHAINING

Analysis of Separate Chaining

▸ Under uniform hashing assumption, if keys to hash in a table
with size , the length of each chain is ~ .

▸ Consequence: Number of probes (calls to either equals() or
hashCode()) for search/insert is proportional to (times
faster than sequential search in a single chain).

▸ too large -> too many empty chains.

▸ too small -> chains too long.

▸ Typical choice: ~ -> constant time per operation.

n
m n/m

n/m m

m

m

m 1/5n

80

SEPARATE CHAINING

Resizing in a separate-chaining hash table

▸ Goal: Average length of chain = constant lookup.

▸ Double hash table size when .

▸ Halve hash table size when .

▸ Need to rehash all keys when resizing (hashCode value for
key does not change, but hash value changes as it depends
on table size).

n/m

n/m ≥ 8

n/m ≤ 2

81

SEPARATE CHAINING

Parting thoughts about separate-chaining

▸ Deletion: Easy! Hash key, find its chain, search for a node that
contains it and remove it.

▸ Ordered operations: not supported. Instead, look into
(balanced) BSTs.

▸ Fastest and most widely used dictionary implementation for
applications where key order is not important.

82

TODAY’S LECTURE IN A NUTSHELL

Lecture 26-27: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

83

OPEN ADDRESSING: COLLISION RESOLUTION USING AN ARRAY

Linear Probing

▸ Belongs in the open addressing family.

▸ Alternate approach to handle collisions when
.

▸ Maintain keys and values in two parallel arrays.

▸ When a new key collides, find next empty slot
and put it there.

▸ If the array is full, the search would not
terminate.

m > n

84

OPEN ADDRESSING

Linear Probing

▸ Hash: Map key to integer between and .

▸ Insert: Put at index if free. If not, try , , etc.

▸ Search: Search table index . If occupied but no match, try , , etc

▸ If you find a gap then you know that it does not exist.

▸ Table size must be greater than the number of key-value pairs .

i 0 m − 1

i i + 1 i + 2

i i + 1 i + 2

m n

85

TEXT 86

OPEN ADDRESSING

Linear Probing Example

87

OPEN ADDRESSING

Practice time

88

▸ Assume a dictionary implemented using hashing and linear
probing for handling collisions.

▸ Let be the hash table size.

▸ For simplicity, we will assume that keys are integers and that
the hash value for each key is calculated as .

▸ Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4),
(47,5) and show the resulting dictionary.

m = 7

k h(k) = k % m

Keys 28 14 9 3 47

Values 2 3 2 1 5

Indices 0 1 2 3 4 5 6

OPEN ADDRESSING

Answer

89

Key Hash Value
47 5 0
3 3 1

28 0 2
14 0 3
9 2 4

47 5 5

OPEN ADDRESSING

Symbol table with linear probing implementation

public class LinearProbingHashST<Key, Value> {

 private int m = 32768; // hash table size
 private Value[] Vals = (Value[]) new Object[m]; // parallel arrays  
 private Key[] Vals = (Key[]) new Object[m];
  
 public Value get(Key key) {
 for (int i = hash(key); keys[i] != null; i = (i+1) % m) { // start at hash  
 if (key.equals(keys[i])) return vals[i]; // increment by 1, wrap
 }  
 return null;
 }  
 
 public void put(Key key, Value val) {
 int i;
 for (int i = hash(key); keys[i] != null; i = (i+1) % m) { // start at hash  
 if (key.equals(keys[i])){ // increment by 1, wrap  
 break;
 }  
 }  
 keys[i] = key;  
 vals[i] = val;
 }

90

OPEN ADDRESSING

Primary clustering

▸ Cluster: a contiguous block of keys.

▸ Observation: new keys likely to hash in middle of big clusters.

91

OPEN ADDRESSING

Analysis of Linear Probing

▸ Proposition: Under uniform hashing assumption, the average number of probes in a linear-
probing hash table of size that contains n keys where is at most

▸ for search hits and

▸ for search misses and insertions.

▸ [Knuth 1963], < 1 what happens when alpha is 1/2? Close to 1 say 0.9?

▸ Parameters:

▸ too large -> too many empty array entries.

▸ too small -> search time becomes too long.

▸ Typical choice for load factor: ~ -> constant time per operation.

m n = αm

1/2(1 +
1

1 − a
)

1/2(1 +
1

(1 − a)2
)

α

m

m

α = n /m 1/2

92

TEXT 93

OPEN ADDRESSING

Resizing in a linear probing hash table

▸ Goal: Fullness of array (load factor) .

▸ Double hash table size when .

▸ Halve hash table size when .

▸ Need to rehash all keys when resizing (hash code does not
change, but hash value changes as it depends on table
size).

▸ Deletion not straightforward.

n/m ≤ 1/2

n/m ≥ 1/2

n/m ≤ 1/8

94

OPEN ADDRESSING

Quadratic Probing

▸ Another open addressing technique that aims to reduce
primary clustering by taking the original hash index and
adding successive values of an arbitrary quadratic polynomial
until an open slot is found.

▸ Modify the probe sequence so that
, where is the -th time

we have had a collision for the given index.

▸ When , then quadratic probing reduces to linear
probing.

h(k, i) = (h(k) + c1i + c2i2) % m, c2 ≠ 0 i i

c2 = 0

95

OPEN ADDRESSING

Quadratic probing - Example

▸ and .

▸ Assume , and key-value pairs to insert: (17,0), (33,1),
(18,2), (20,3), (44,4), (11,5), (19,6), (7,7).

h(k) = k % m h(k, i) = (h(k) + i2) % m

m = 13

96

0 1 2 3 4 5 6 7 8 9 10 11 12

17

17 33

17 18 33

17 18 33 20 Collision!

17 18 44 33 20 Collision!

17 18 44 33 20 11

17 18 44 33 20 19 11 Collision!

7 17 18 44 33 20 19 11

(17,0)

(33,1)

(18,2)

(20,3)

(44,4)

(11,5)

(19,6)

(7,7) Collision!

OPEN ADDRESSING

Summary for dictionary/symbol table operations

97

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search tree

Separate
chaining

Open
addressing

n n n log n

n n n 1

log n log n

11

n n n 111

log n log n log nlog n log n log n

OPEN ADDRESSING

Hash tables vs balanced search trees

▸ Hash tables:

▸ Simpler to code.

▸ No effective alternative of unordered keys.

▸ Faster for simple keys (a few arithmetic operations versus compares).

▸ Balanced search trees:

▸ Stronger performance guarantee.

▸ Support for ordered symbol table operations.

▸ Easier to implement compareTo() than hashCode().

▸ Java includes both:

▸ Balanced search trees: java.util.TreeMap, java.util.TreeSet.

▸ Hash tables: java.util.HashMap, java.util.IdentityHashMap.

log n

98

TODAY’S LECTURE IN A NUTSHELL

Lecture 26-27: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

99

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.4 (Pages 458-477)

▸ Website:

▸ https://algs4.cs.princeton.edu/34hash/

▸ Visualization:

▸ https://visualgo.net/en/hashtable

100

Practice Problems:

▸ 3.4.1-3.4.13

