
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

20: Left-leaning Red Black Trees

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Tom Yeh
he/him/his

2-3 SEARCH TREES

Order of growth for symbol table operations

2

Worst case Average case

Search Insert Delete Search Insert Delete

BST

Goal

n n n log n log n n

log n log n log nlog nlog nlog n

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Red-Black Search Trees

▸ 2-3 Search Trees

▸ Left-leaning Red-Black Trees

▸ Midterm Topics

3

Some slides adopted from Algorithms 4th Edition or COS226

2-3 SEARCH TREES

2-3 tree

4

▸ Definition: A 2-3 tree is either empty or a

▸ 2-node: one key (and associated value) and two links, a left to a 2-3
search tree with smaller keys, and a right to a 2-3 search tree with larger
keys (similarly to standard BSTs), or a

▸ 3-node: two keys (and associated values) and three links, a left to a 2-3
search tree with smaller keys, a middle to a 2-3 search tree with keys
between the node’s keys, and a right to a 2-3 search tree with larger keys.

▸ Symmetric order: In-order traversal yields keys in ascending order.

▸ Perfect balance: Every path from root to null link (empty tree) has the same
length.

2-3 SEARCH TREES

Example of a 2-3 tree

5

▸ 2-node, business as usual with BSTs.

▸ (Node M: EJ are smaller than M and R is larger than M).

▸ In 3-node,

▸ left link points to 2-3 search tree with smaller keys than first
key,

▸ (e.g., AC are smaller than E.)

▸ middle link points to 2-3 search tree with keys between first
and second key,

▸ (e.g. H is between E and J.)

▸ right link points to 2-3 search tree with keys larger than
second key.

▸ (e.g, L is larger than J).

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

6

SEARCH

How to search for a key

7

▸ Compare search key against (every) key in node.

▸ Find interval containing search key (left, potentially middle, or right).

▸ Follow associated link, recursively.

8

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

9

INSERTION

How to insert into a 2-node

10

▸ Add new key to 2-node to create a 3-node.

11

INSERTION

How to insert into a tree consisting of a single 3-node

12

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Move middle key in 4-node into
parent.

▸ Split 4-node into two 2-nodes.
Middle key is elevated to parent.

▸ Height went up by 1.

INSERTION

How to insert into a 3-node whose parent is a 2-node

13

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Replace 2-node parent with 3-node.

INSERTION

How to insert into a 3-node whose parent is a 3-node

14

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent creating a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Repeat up the tree, as necessary.

INSERTION

Splitting the root

15

▸ If end up with a temporary 4-node
root, split into three 2-nodes.

▸ Increases height by 1 but perfect
balance is preserved.

16

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

17

CONSTRUCTION

Draw the 2-3 tree that results when you insert the keys:
E A S Y Q U T I O N in that order in an initially empty tree.

18

▸ E A S Y Q U T I O N

CONSTRUCTION

Draw the 2-3 tree that results when you insert the keys:
E A S Y Q U T I O N in that order in an initially empty tree.

19

▸ E A S Y Q U T I O N

https://www.cs.usfca.edu/~galles/visualization/BTree.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

20

PERFORMANCE

Height of 2-3 search trees

21

▸ Worst case: (all 2-nodes).

▸ Best case: (all 3-nodes)

▸ That means that storing a million nodes will lead to a tree with height between
12 and 20, and storing a billion nodes to a tree with height between 18 and
30 (not bad!).

▸ Search and insert are !

▸ But implementation is a pain and the overhead incurred could make the
algorithms slower than standard BST search and insert.

▸ We did provide insurance against a worst case but we would prefer the overhead
cost for that insurance to be low. Stay tuned! We will see a much easier way.

log n

log3 n = 0.631 log n

O(log n)

PERFORMANCE

Summary for symbol table/dictionary operations

22

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search
trees

n n n log n log n n

log n log n log nlog nlog nlog n

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.3 (Pages 424-431)

▸ Website:

▸ https://algs4.cs.princeton.edu/33balanced/

23

Practice Problems:

▸ 3.3.2-3.3.5

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

24

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

▸ Represent 2-3 tree as a BST

▸ Start with standard BSTs which are made up of 2-nodes.

▸ Use “internal” left-leaning links as “glue” for 3-nodes

▸ Add extra information to encode 3-nodes. We will introduce two types of links.

▸ Red links: bind together two 2-nodes to represent a 3-node.

▸ Specifically, 3-nodes are represented as two 2-nodes connected by a single
red link that leans left (one of the 2-nodes is the left child of the other).

▸ Black links: bind together the 2-3 tree.

▸ Advantage: Can use BST code with minimal modification.

25

INTRODUCTION

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

26

INTRODUCTION

Definition

▸ A left-leaning red-black tree is a BST such that:

▸ No node has two red links connected to it.

▸ Red links “glue” 2 2-nodes to make 1 3-node

▸ Red link leans left.

▸ Every path from root to leaves has the same number of
black links (perfect black balance). Red links are
“internal”.

27

INTRODUCTION

Search

▸ Exactly the same as for elementary BSTs (we ignore the color).

▸ But runs faster because of better balance.
 public Value get(Key key) {
 if (key == null) throw new IllegalArgumentException("argument to get() is null");
 return get(root, key);
 }

 // value associated with the given key in subtree rooted at x; null if no such key
 private Value get(Node x, Key key) {
 while (x != null) {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else return x.val;
 }
 return null;
 }

▸ Operations such as floor, iteration, rank, selection are also identical.

▸ Insertion needs to be updated

28

BEFORE INSERTION

Representation

▸ There is no representation of the links in BST

▸ Each node is pointed to by one node, its parent.

▸ We can use this to encode the color of the links in nodes.

▸ True if the link from the parent is red and false if it is black. Null links are black.
 private static final boolean RED = true;
 private static final boolean BLACK = false;

 private Node root; // root of the BST

 // BST helper node data type
 private class Node {
 private Key key; // key
 private Value val; // associated data
 private Node left, right; // links to left and right subtrees
 private boolean color; // color of parent link
 private int size; // subtree count

 private boolean isRed(Node x) {
 if (x == null) return false;
 return x.color == RED;
 }

29

INTRODUCTION

Story so far

▸ BSTs can get imbalanced and long.

▸ 2-3 trees are balanced but cumbersome to code.

▸ Imagine 3-nodes held together by internal glue links
shown in red.

▸ Draw links by giving them red or black color.

▸ Represent them in memory by storing the color of the link
coming from the parent as the color of the child node.

30

INTRODUCTION

Practice Time

▸ Which of the following are legal LLRB trees?

31

▸ A left-leaning red-black tree is a BST such that:

▸ No node has two red links connected to it.

▸ Red links connect 2 2-nodes to make 1 3-node

▸ Red link leans left.

▸ Every path from root to leaves has the same number of black links (perfect black balance).

INTRODUCTION

Answer

▸ Which of the following are legal LLRB trees?

▸ iii and iv

▸ i is not balanced and ii is also not in symmetrical order

32

TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

33

ELEMENTARY RED-BLACK BST OPERATIONS - TO FIX TREE FROM INSERTION

Left rotation: Orient a (temporarily) right-leaning red link to lean left

34

ELEMENTARY RED-BLACK BST OPERATIONS - ALSO NEED TO LEAN RIGHT

Right rotation: Orient a left-leaning red link to a (temporarily) lean right

35

ELEMENTARY RED-BLACK BST OPERATIONS - ONLY CHANGE COLORS TO SPLIT

Color flip: Recolor to split a (temporary) 4-node

36

TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

37

INSERTION

Basic strategy: Maintain 1-1 correspondence with 2-3 trees

▸ During internal operations, maintain:

▸ symmetric order.

▸ perfect black balance.

▸ But we might violate color invariants. For example:

▸ Right-leaning red link.

▸ Two red children (temporary 4-node).

▸ Left-left red (temporary 4-node).

▸ Left-right red (temporary 4-node).

▸ To restore color invariant we will be performing rotations and color flips.

38

INSERTION

Insertion into a LLRB

▸ Do standard BST insertion and color the new link red.

▸ Repeat until color invariants restored:

▸ Both children red? Flip colors.

▸ Right link red? Rotate left.

▸ Two left reds in a row? Rotate right.

39

40

INSERTION

Implementation

41

▸ Only three cases:

▸ Right child red; left child black: rotate left.

▸ Left child red; left-left grandchild red: rotate right.

▸ Both children red: flip colors.
 // insert the key-value pair in the subtree rooted at h
 private Node put(Node h, Key key, Value val) {
 if (h == null) return new Node(key, val, RED, 1); // Insert at bottom and color red

 int cmp = key.compareTo(h.key); // Compare as before to traverse tree
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else h.val = val;

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); // Fix any right-leaning links
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);// 2 left red links
 if (isRed(h.left) && isRed(h.right)) flipColors(h); // 4-node
 h.size = size(h.left) + size(h.right) + 1;

 return h;
 }

INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in ascending order.

42

INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in descending order.

43

INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in random order.

44

INSERTION

Examples

45

TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

46

MATHEMATICAL ANALYSIS

Balance in LLRB trees

▸ Height of LLRB trees is in the worst case. Can you
think of the worst case?

▸ Worst case is a 2-3 tree that is all 2-nodes except that the
left-most path is made up of 3-nodes.

▸ All ordered operations (min, max, floor, ceiling) etc. are
also .

≤ 2 log n

O(log n)

47

PERFORMANCE

Summary for symbol table operations

48

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search
tree

Red-black
BSTs

n n n 1.39 log n n

c log n

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

PERFORMANCE

Summary for symbol table operations

49

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential
search

(unordered
Binary search

(ordered
array)

BST

2-3 search
tree

Red-black
BSTs

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n ?

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

50

HISTORICAL CONTEXT

Red-black trees

▸ Why red-black? Invented at Xerox PARC, had a laser printer and
red and black had the best contrast…

▸ Left-leaning red-black trees [Sedgewick, 2008]

▸ Inspired by difficulties in proper implementation of RB BSTs.

▸ RB BSTs have been involved in lawsuit because of improper
implementation.

▸ Telephone service outage due to exceeding height bound

▸ Telephone company sues database provider

51

HISTORICAL CONTEXT

Balanced trees in the wild

▸ Red-black trees are widely used as system symbol tables.

▸ e.g., Java: java.util.TreeMap and
java.util.TreeSet.

▸ Other balanced BSTs: AVL, splay, randomized.

▸ 2-3 search trees are a subset of b-trees.

▸ See book for more.

▸ B-trees are widely used for file systems and databases.

52

TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

53

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.3 (Pages 432-447)

▸ Website:

▸ https://algs4.cs.princeton.edu/33balanced/

54

Practice Problems:

▸ 3.3.9-3.3.22

TEXT 55

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Midterm Topics

▸ Sorting

▸ Heaps/Priority Queues

▸ Dictionaries

▸ Misc

▸ Practice Problems

▸ End of lecture slides

▸ Go over in midterm review during lab

56

TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Selection sort

▸ Insertion sort

▸ Merge sort

▸ Quick sort

▸ Heap sort

57

TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Given an array of n items, sort them in non-descending order
based on a comparable key.

▸ Cost model counts comparisons (calls to less()) and
exchanges (calls to exch()) (or array accesses).

▸ Not in place: If linear extra memory is required.

▸ Stable: If duplicate elements stay in the same order that they
appear in the input.

▸ Practice: https://visualgo.net/en/sorting (minus quick sort).

58

TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees

▸ Search

▸ Insertion

▸ Deletion

▸ 2-3 search trees

▸ Left-leaning Red Black search trees

59

TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees

▸ 2-3 search trees

60

TODAY’S LECTURE IN A NUTSHELL

2-3 search trees

▸ Balanced (every path from root to leaf has same length)
search tree that follow the symmetric order. Contain 2
nodes (one key and two children) or 3 nodes (two keys
and three children).

▸ Search and insertion of keys (and values) is .

▸ A pain to implement.

▸ Practice: https://www.cs.usfca.edu/~galles/visualization/
BTree.html (max-degree 3).

O(log n)

61

TODAY’S LECTURE IN A NUTSHELL

2-3 search trees

62

TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces

▸ Iterable/Iterator Interfaces

▸ BT Traversals

63

TODAY’S LECTURE IN A NUTSHELL

Comparable Interface

▸ Interface with a single method that we need to implement:
public int compareTo(T that)

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w.

▸ Returns <0 if v is smaller than w.

▸ Returns 0 if v is equal to w.

▸ Corresponds to natural ordering.

64

TODAY’S LECTURE IN A NUTSHELL

Comparator Interface

▸ Sometimes the natural ordering is not the type of ordering we want.

▸ Comparator is an interface which allows us to dictate what kind of ordering we want by
implementing the method:
public int compare(T this, T that)

▸ Implement it so that compare(v, w):

▸ Returns >0 if v is greater than w.

▸ Returns <0 if v is smaller than w.

▸ Returns 0 if v is equal to w.

‣ public static Comparator<ClassName> reverseComparator(){
return (ClassName a, ClassName b)->{return -a.compareTo(b)};  

 }

65

TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces

▸ Iterable/Iterator Interfaces

▸ BT Traversals

66

TODAY’S LECTURE IN A NUTSHELL

Iterable<T> Interface

▸ Interface with a single method that we need to implement:
Iterator<T> iterator()

▸ Class becomes iterable, that is it can be traversed with a
for-each loop.

▸ for (String student: students){  
 System.out.println(student);  
}

67

TODAY’S LECTURE IN A NUTSHELL

Iterator<T> Interface

▸ Interface with two methods that we need to implement: boolean
hasNext() and T next().

▸ hasNext() checks whether there is any element we have not seen yet.

▸ next() returns the next available element.

▸ Always check if there are any available elements before returning the next
one.

▸ Typically a comparable class, has an inner class that implements Iterator.
Outer class’s iterator method returns an instance of inner class.

▸ Can also be implemented in a standalone class where collection to iterate
over is passed in the constructor.

68

TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces

▸ Iterable/Iterator Interfaces

▸ BT Traversals

69

TODAY’S LECTURE IN A NUTSHELL

BT traversals

▸ Pre-order: mark root visited, left subtree, right subtree.

▸ In-order: left subtree, mark root visited, right subtree.

▸ Post-order: left subtree, right subtree, mark root visited.

▸ Level-order: start at root, mark each node as visited level
by level, from left to right.

70

TODAY’S LECTURE IN A NUTSHELL

Practice Problems

▸ Problem 1 - Sorting

▸ Problem 2 - Heaps

▸ Problem 3 - Tree traversals

▸ Problem 4 - Binary Trees

▸ Problem 5 - Binary Search Trees

▸ Problem 6 - Iterators

71

TODAY’S LECTURE IN A NUTSHELL

Problem 1 - Sorting

72

▸ In the next slide, you can find a table whose first row (last column 0) contains an array
of 18 unsorted numbers between 1 and 50. The last row (last column 6) contains the
numbers in sorted order. The other rows show the array in some intermediate state
during one of these five sorting algorithms:

▸ 1-Selection sort

▸ 2-Insertion sort

▸ 3-Mergesort

▸ 4-Quicksort (no initial shuffling, one partition only)

▸ 5-Heapsort

▸ Match each algorithm with the right row by writing its number (1-5) in the last column.

TODAY’S LECTURE IN A NUTSHELL 73

12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15 0
11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15
10 11 12 46 20 43 42 47 44 32 16 35 40 18 41 21 28 15
10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46
43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47
11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15
10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47 6

Problem 1 - Sorting

TODAY’S LECTURE IN A NUTSHELL

Problem 2 - Heaps

74

▸ Consider the following max-heap:

▸ Draw the heap after you insert key 13.

▸ Suppose you delete the maximum key from the original
heap. Draw the heap after you delete 14.

TODAY’S LECTURE IN A NUTSHELL

Problem 3 - Tree Traversals

75

▸ Circle the correct binary tree(s) that would produce both of
the following traversals:

▸ Pre-order: C R B W O S T N Q

▸ In-order: B R W O C S N T Q

TODAY’S LECTURE IN A NUTSHELL

Problem 4 - Binary Trees

76

▸ You are extending the functionality of the BinaryTree class that represents binary
trees with the goal of counting the number of leaves. Remember that BinaryTree
has a pointer to a root Node and the inner class Node has two pointers, left and
left to the root nodes that correspond to its left and right subtrees.

▸ You are given the following public method:

 public int sumLeafTree()

 return sumLeafTree(root);

 }

‣ Please fill in the body of the following recursive method

private int sumLeafTree(Node x){…}

TODAY’S LECTURE IN A NUTSHELL

Problem 5 - Binary Search Trees

77

▸ You are extending the functionality of the BST class that represents binary search trees with the
goal of counting the number of nodes whose keys fall within a given [low, high] range.
That is you want to count how many nodes have keys that are equal or larger than low and
equal or smaller than high. Remember that BST has a pointer to a root Node and the inner
class Node has two pointers, left and left to the root nodes that correspond to its left and
right subtrees and a Comparable Key key (please ignore the value).

▸ You are given the following public method:

 public int countRange(Key low, Key high)

 return countRange(root, Key low, Key high);

 }

‣ Please fill in the body of the following recursive method

private int countRange(Node x, Key low, Key high){…}

TODAY’S LECTURE IN A NUTSHELL

Problem 6 - Iterators

78

▸ A programmer discovers that they frequently need only the odd numbers in an arraylist of
integers. As a result, they decided to write a class OddIterator that implements the
Iterator interface. Please help them implement the constructor and the hasNext() and
next() methods so that they can retrieve the odd values, one at a time. For example, if the
arraylist contains the elements [7, 4, 1, 3, 0], the iterator should return the values 7, 1, and 3.
You are given the following public class:

public class OddIterator implements Iterator<Integer> {

// The array whose odd values are to be enumerated  
private ArrayList<Integer> myArrayList;

//any other instance variables you might need

//An iterator over the odd values of myArrayList
public OddIterator(ArrayList<Integer> myArrayList){…}

//runs in O(n) time
public boolean hasNext(){…}
 
//runs in O(1) time  
public Integer next(){…}
}

