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2-3 SEARCH TREES

Order of growth for symbol table operations

2

Worst case Average case

Search Insert Delete Search Insert Delete

BST

Goal

n n n log n log n n

log n log n log nlog nlog nlog n



TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Red-Black Search Trees

▸ 2-3 Search Trees 

▸ Left-leaning Red-Black Trees 

▸ Midterm Topics

3

Some slides adopted from Algorithms 4th Edition or COS226



2-3 SEARCH TREES

2-3 tree

4

▸ Definition: A 2-3 tree is either empty or a 

▸ 2-node: one key (and associated value) and two links, a left to a 2-3 
search tree with smaller keys, and a right to a 2-3 search tree with larger 
keys (similarly to standard BSTs), or a 

▸ 3-node: two keys (and associated values) and three links, a left to a 2-3 
search tree with smaller keys, a middle to a 2-3 search tree with keys 
between the node’s keys, and a right to a 2-3 search tree with larger keys. 

▸ Symmetric order: In-order traversal yields keys in ascending order. 

▸ Perfect balance: Every path from root to null link (empty tree) has the same 
length.



2-3 SEARCH TREES

Example of a 2-3 tree
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▸ 2-node, business as usual with BSTs. 

▸ (Node M:  EJ are smaller than M and R is larger than M). 

▸ In 3-node,  

▸ left link points to 2-3 search tree with smaller keys than first 
key, 

▸ (e.g., AC are smaller than E.) 

▸ middle link points to 2-3 search tree with keys between first 
and second key, 

▸ (e.g. H is between E and J.) 

▸ right link points to 2-3 search tree with keys larger than 
second key. 

▸ (e.g, L is larger than J).



TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 

▸ Performance
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SEARCH

How to search for a key

7

▸ Compare search key against (every) key in node. 

▸ Find interval containing search key (left, potentially middle, or right). 

▸ Follow associated link, recursively.
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TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 

▸ Performance
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INSERTION

How to insert into a 2-node

10

▸ Add new key to 2-node to create a 3-node.
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INSERTION

How to insert into a tree consisting of a single 3-node

12

▸ Add new key to 3-node to create a 
temporary 4-node. 

▸ Move middle key in 4-node into 
parent. 

▸ Split 4-node into two 2-nodes. 
Middle key is elevated to parent. 

▸ Height went up by 1.



INSERTION

How to insert into a 3-node whose parent is a 2-node
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▸ Add new key to 3-node to create a 
temporary 4-node. 

▸ Split 4-node into two 2-nodes and 
pass middle key to parent. 

▸ Replace 2-node parent with 3-node.



INSERTION

How to insert into a 3-node whose parent is a 3-node

14

▸ Add new key to 3-node to create a 
temporary 4-node. 

▸ Split 4-node into two 2-nodes and 
pass middle key to parent creating a 
temporary 4-node. 

▸ Split 4-node into two 2-nodes and 
pass middle key to parent. 

▸ Repeat up the tree, as necessary.



INSERTION

Splitting the root
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▸ If end up with a temporary 4-node 
root, split into three 2-nodes. 

▸ Increases height by 1 but perfect 
balance is preserved.
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TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 

▸ Performance
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CONSTRUCTION

Draw the 2-3 tree that results when you insert the keys: 
E A S Y Q U T I O N in that order in an initially empty tree.

18

▸ E A S Y Q U T I O N



CONSTRUCTION

Draw the 2-3 tree that results when you insert the keys: 
E A S Y Q U T I O N in that order in an initially empty tree.
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▸ E A S Y Q U T I O N

https://www.cs.usfca.edu/~galles/visualization/BTree.html



TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 

▸ Performance

20



PERFORMANCE

Height of 2-3 search trees

21

▸ Worst case:  (all 2-nodes). 

▸ Best case:  (all 3-nodes)  

▸ That means that storing a million nodes will lead to a tree with height between 
12 and 20, and storing a billion nodes to a tree with height between 18 and 
30 (not bad!). 

▸  Search and insert are ! 

▸ But implementation is a pain and the overhead incurred could make the 
algorithms slower than standard BST search and insert.  

▸ We did provide insurance against a worst case but we would prefer the overhead 
cost for that insurance to be low. Stay tuned! We will see a much easier way.

log n

log3 n = 0.631 log n

O(log n)



PERFORMANCE

Summary for symbol table/dictionary operations

22

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search 
trees
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.3 (Pages 424-431) 

▸ Website: 

▸ https://algs4.cs.princeton.edu/33balanced/

23

Practice Problems:

▸ 3.3.2-3.3.5



TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context

24

Some slides adopted from Algorithms 4th Edition or COS226



INTRODUCTION

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

▸ Represent 2-3 tree as a BST  

▸ Start with standard BSTs which are made up of 2-nodes. 

▸ Use “internal” left-leaning links as “glue” for 3-nodes 

▸ Add extra information to encode 3-nodes. We will introduce two types of links. 

▸ Red links: bind together two 2-nodes to represent a 3-node. 

▸ Specifically, 3-nodes are represented as two 2-nodes connected by a single 
red link that leans left (one of the 2-nodes is the left child of the other). 

▸ Black links: bind together the 2-3 tree.  

▸ Advantage: Can use BST code with minimal modification. 
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INTRODUCTION

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees
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INTRODUCTION

Definition

▸ A left-leaning red-black tree is a BST such that: 

▸ No node has two red links connected to it. 

▸ Red links “glue” 2 2-nodes to make 1 3-node 

▸ Red link leans left. 

▸ Every path from root to leaves has the same number of 
black links (perfect black balance). Red links are 
“internal”.
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INTRODUCTION

Search

▸ Exactly the same as for elementary BSTs (we ignore the color). 

▸ But runs faster because of better balance.  
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        return get(root, key);
    }

    // value associated with the given key in subtree rooted at x; null if no such key
    private Value get(Node x, Key key) {
        while (x != null) {
            int cmp = key.compareTo(x.key);
            if      (cmp < 0) x = x.left;
            else if (cmp > 0) x = x.right;
            else              return x.val;
        }
        return null;
    }

▸ Operations such as floor, iteration, rank, selection are also identical. 

▸ Insertion needs to be updated

28



BEFORE INSERTION

Representation

▸ There is no representation of the links in BST 

▸ Each node is pointed to by one node, its parent.  

▸ We can use this to encode the color of the links in nodes.  

▸ True if the link from the parent is red and false if it is black. Null links are black. 
    private static final boolean RED   = true;
    private static final boolean BLACK = false;

    private Node root;     // root of the BST

    // BST helper node data type
    private class Node {
        private Key key;           // key
        private Value val;         // associated data
        private Node left, right;  // links to left and right subtrees
        private boolean color;     // color of parent link
        private int size;          // subtree count

    private boolean isRed(Node x) {
        if (x == null) return false;
        return x.color == RED;
    }

29



INTRODUCTION

Story so far

▸ BSTs can get imbalanced and long. 

▸ 2-3 trees are balanced but cumbersome to code. 

▸ Imagine 3-nodes held together by internal glue links 
shown in red. 

▸ Draw links by giving them red or black color. 

▸ Represent them in memory by storing the color of the link 
coming from the parent as the color of the child node.

30



INTRODUCTION

Practice Time

▸ Which of the following are legal LLRB trees?

31

▸ A left-leaning red-black tree is a BST such that: 

▸ No node has two red links connected to it. 

▸ Red links connect 2 2-nodes to make 1 3-node 

▸ Red link leans left. 

▸ Every path from root to leaves has the same number of black links (perfect black balance).



INTRODUCTION

Answer

▸ Which of the following are legal LLRB trees? 

▸ iii and iv 

▸ i is not balanced and ii is also not in symmetrical order

32



TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context

33



ELEMENTARY RED-BLACK BST OPERATIONS - TO FIX TREE FROM INSERTION

Left rotation: Orient a (temporarily) right-leaning red link to lean left

34



ELEMENTARY RED-BLACK BST OPERATIONS - ALSO NEED TO LEAN RIGHT

Right rotation: Orient a left-leaning red link to a (temporarily) lean right
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ELEMENTARY RED-BLACK BST OPERATIONS - ONLY CHANGE COLORS TO SPLIT

Color flip: Recolor to split a (temporary) 4-node

36



TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context
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INSERTION

Basic strategy: Maintain 1-1 correspondence with 2-3 trees

▸ During internal operations, maintain: 

▸ symmetric order. 

▸ perfect black balance. 

▸ But we might violate color invariants. For example: 

▸ Right-leaning red link. 

▸ Two red children (temporary 4-node). 

▸ Left-left red (temporary 4-node). 

▸ Left-right red (temporary 4-node). 

▸ To restore color invariant we will be performing rotations and color flips.

38



INSERTION

Insertion into a LLRB

▸ Do standard BST insertion and color the new link red. 

▸ Repeat until color invariants restored: 

▸ Both children red? Flip colors. 

▸ Right link red? Rotate left. 

▸ Two left reds in a row? Rotate right.

39
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INSERTION

Implementation

41

▸ Only three cases: 

▸ Right child red; left child black: rotate left. 

▸ Left child red; left-left grandchild red: rotate right. 

▸ Both children red: flip colors. 
    // insert the key-value pair in the subtree rooted at h
    private Node put(Node h, Key key, Value val) { 
        if (h == null) return new Node(key, val, RED, 1);  // Insert at bottom and color red

        int cmp = key.compareTo(h.key);                    // Compare as before to traverse tree 
        if      (cmp < 0) h.left  = put(h.left,  key, val); 
        else if (cmp > 0) h.right = put(h.right, key, val); 
        else              h.val   = val;

        if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h); // Fix any right-leaning links
        if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);// 2 left red links
        if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);     // 4-node
        h.size = size(h.left) + size(h.right) + 1;

        return h;
    }



INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in ascending order.
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INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in descending order.

43



INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in random order.
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INSERTION

Examples

45



TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context
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MATHEMATICAL ANALYSIS

Balance in LLRB trees

▸ Height of LLRB trees is  in the worst case. Can you 
think of the worst case? 

▸ Worst case is a 2-3 tree that is all 2-nodes except that the 
left-most path is made up of 3-nodes. 

▸ All ordered operations (min, max, floor, ceiling) etc. are 
also .

≤ 2 log n

O(log n)
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PERFORMANCE

Summary for symbol table operations

48

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search 
tree

Red-black 
BSTs
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PERFORMANCE

Summary for symbol table operations

49

Worst case Average case
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Sequential 
search 
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TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context

50



HISTORICAL CONTEXT

Red-black trees

▸ Why red-black? Invented at Xerox PARC, had a laser printer and 
red and black had the best contrast… 

▸ Left-leaning red-black trees [Sedgewick, 2008] 

▸ Inspired by difficulties in proper implementation of RB BSTs. 

▸ RB BSTs have been involved in lawsuit because of improper 
implementation.  

▸ Telephone service outage due to exceeding height bound 

▸ Telephone company sues database provider 

51



HISTORICAL CONTEXT

Balanced trees in the wild

▸ Red-black trees are widely used as system symbol tables. 

▸ e.g., Java: java.util.TreeMap and 
java.util.TreeSet. 

▸ Other balanced BSTs: AVL, splay, randomized. 

▸ 2-3 search trees are a subset of b-trees. 

▸ See book for more. 

▸ B-trees are widely used for file systems and databases.
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TODAY’S LECTURE IN A NUTSHELL

Lecture 28-29: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.3 (Pages 432-447) 

▸ Website: 

▸ https://algs4.cs.princeton.edu/33balanced/

54

Practice Problems:

▸ 3.3.9-3.3.22
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TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Midterm Topics

▸ Sorting 

▸ Heaps/Priority Queues 

▸ Dictionaries 

▸ Misc 

▸ Practice Problems 

▸ End of lecture slides 

▸ Go over in midterm review during lab

56



TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Selection sort 

▸ Insertion sort 

▸ Merge sort 

▸ Quick sort 

▸ Heap sort

57



TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Given an array of n items, sort them in non-descending order 
based on a comparable key. 

▸ Cost model counts comparisons (calls to less()) and 
exchanges (calls to exch()) (or array accesses). 

▸ Not in place: If linear extra memory is required. 

▸ Stable: If duplicate elements stay in the same order that they 
appear in the input. 

▸ Practice: https://visualgo.net/en/sorting (minus quick sort).
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TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees 

▸ Search 

▸ Insertion 

▸ Deletion 

▸ 2-3 search trees 

▸ Left-leaning Red Black search trees
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TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees 

▸ 2-3 search trees
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TODAY’S LECTURE IN A NUTSHELL

2-3 search trees

▸ Balanced (every path from root to leaf has same length) 
search tree that follow the symmetric order. Contain 2 
nodes (one key and two children) or 3 nodes (two keys 
and three children).  

▸ Search and insertion of keys (and values) is . 

▸ A pain to implement. 

▸ Practice: https://www.cs.usfca.edu/~galles/visualization/
BTree.html (max-degree 3).

O(log n)
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TODAY’S LECTURE IN A NUTSHELL

2-3 search trees
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TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces 

▸ Iterable/Iterator Interfaces 

▸ BT Traversals

63



TODAY’S LECTURE IN A NUTSHELL

Comparable Interface

▸ Interface with a single method that we need to implement: 
public int compareTo(T that) 

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w. 

▸ Returns <0 if v is smaller than w. 

▸ Returns 0 if v is equal to w. 

▸ Corresponds to natural ordering. 
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TODAY’S LECTURE IN A NUTSHELL

Comparator Interface

▸ Sometimes the natural ordering is not the type of ordering we want. 

▸ Comparator is an interface which allows us to dictate what kind of ordering we want by 
implementing the method:  
public int compare(T this, T that) 

▸ Implement it so that compare(v, w):

▸ Returns >0 if v is greater than w. 

▸ Returns <0 if v is smaller than w. 

▸ Returns 0 if v is equal to w. 

‣ public static Comparator<ClassName> reverseComparator(){
return (ClassName a, ClassName b)->{return -a.compareTo(b)};  

    }
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TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces 

▸ Iterable/Iterator Interfaces 

▸ BT Traversals
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TODAY’S LECTURE IN A NUTSHELL

Iterable<T> Interface

▸ Interface with a single method that we need to implement: 
Iterator<T> iterator() 

▸ Class becomes iterable, that is it can be traversed with a 
for-each loop. 

▸ for (String student: students){  
       System.out.println(student);  
}
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TODAY’S LECTURE IN A NUTSHELL

Iterator<T> Interface

▸ Interface with two methods that we need to implement: boolean 
hasNext() and T next(). 

▸ hasNext() checks whether there is any element we have not seen yet. 

▸ next() returns the next available element. 

▸ Always check if there are any available elements before returning the next 
one. 

▸ Typically a comparable class, has an inner class that implements Iterator. 
Outer class’s iterator method returns an instance of inner class. 

▸ Can also be implemented in a standalone class where collection to iterate 
over is passed in the constructor.
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TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces 

▸ Iterable/Iterator Interfaces 

▸ BT Traversals
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TODAY’S LECTURE IN A NUTSHELL

BT traversals

▸ Pre-order: mark root visited, left subtree, right subtree. 

▸ In-order: left subtree, mark root visited, right subtree. 

▸ Post-order: left subtree, right subtree, mark root visited. 

▸ Level-order: start at root, mark each node as visited level 
by level, from left to right.
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TODAY’S LECTURE IN A NUTSHELL

Practice Problems

▸ Problem 1 - Sorting 

▸ Problem 2 - Heaps 

▸ Problem 3 - Tree traversals 

▸ Problem 4 - Binary Trees 

▸ Problem 5 - Binary Search Trees 

▸ Problem 6 - Iterators
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TODAY’S LECTURE IN A NUTSHELL

Problem 1 - Sorting

72

▸ In the next slide, you can find a table whose first row (last column 0) contains an array 
of 18 unsorted numbers between 1 and 50. The last row (last column 6) contains the 
numbers in sorted order. The other rows show the array in some intermediate state 
during one of these five sorting algorithms: 

▸ 1-Selection sort 

▸ 2-Insertion sort 

▸ 3-Mergesort 

▸ 4-Quicksort (no initial shuffling, one partition only) 

▸ 5-Heapsort 

▸ Match each algorithm with the right row by writing its number (1-5) in the last column. 
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12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15 0
11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15
10 11 12 46 20 43 42 47 44 32 16 35 40 18 41 21 28 15
10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46
43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47
11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15
10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47 6

Problem 1 - Sorting



TODAY’S LECTURE IN A NUTSHELL

Problem 2 - Heaps

74

▸ Consider the following max-heap: 

 

▸ Draw the heap after you insert key 13. 

▸ Suppose you delete the maximum key from the original 
heap. Draw the heap after you delete 14.



TODAY’S LECTURE IN A NUTSHELL

Problem 3 - Tree Traversals

75

▸ Circle the correct binary tree(s) that would produce both of 
the following traversals: 

▸ Pre-order: C R B W O S T N Q 

▸ In-order: B R W O C S N T Q



TODAY’S LECTURE IN A NUTSHELL

Problem 4 - Binary Trees

76

▸ You are extending the functionality of the BinaryTree class that represents binary 
trees with the goal of counting the number of leaves. Remember that BinaryTree 
has a pointer to a root Node and the inner class Node has two pointers, left and 
left to the root nodes that correspond to its left and right subtrees.  

▸ You are given the following public method: 

  public int sumLeafTree()

    return sumLeafTree(root);

  }

‣ Please fill in the body of the following recursive method  
 
private int sumLeafTree(Node x){…}



TODAY’S LECTURE IN A NUTSHELL

Problem 5 - Binary Search Trees

77

▸ You are extending the functionality of the BST class that represents binary search trees with the 
goal of counting the number of nodes whose keys fall within a given [low, high] range. 
That is you want to count how many nodes have keys that are equal or larger than low and 
equal or smaller than high. Remember that BST has a pointer to a root Node and the inner 
class Node has two pointers, left and left to the root nodes that correspond to its left and 
right subtrees and a Comparable Key key (please ignore the value).  

▸ You are given the following public method: 

  public int countRange(Key low, Key high)

    return countRange(root, Key low, Key high);

  }

‣ Please fill in the body of the following recursive method  
 
private int countRange(Node x, Key low, Key high){…}
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Problem 6 - Iterators

78

▸ A programmer discovers that they frequently need only the odd numbers in an arraylist of 
integers.  As a result, they decided to write a class OddIterator that implements the 
Iterator interface. Please help them implement the constructor and the hasNext() and 
next() methods so that they can retrieve the odd values, one at a time. For example, if the 
arraylist contains the elements [7, 4, 1, 3, 0], the iterator should return the values 7, 1, and 3. 
You are given the following public class: 

public class OddIterator implements Iterator<Integer> {

// The array whose odd values are to be enumerated  
private ArrayList<Integer> myArrayList; 

//any other instance variables you might need

//An iterator over the odd values of myArrayList
public OddIterator(ArrayList<Integer> myArrayList){…}

//runs in O(n) time
public boolean hasNext(){…}
 
//runs in O(1) time  
public Integer next(){…}
}


