
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

2: Java Basics

FUNDAMENTALS

Tom Yeh
he/him/his

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

INTRODUCTIONS

Our team

2

George Johnson
he/him/his

Max Rose
he/him/his

Aidan Garton
he/him/his

Kacie Lee
she/her/hers

Adeena Liang
they/them/their

Ion Tsichrintzi
she/her/hers

Naomi Amuzie
she/her/hers

Carl Bell
he/him/his

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Java Basics

▸ Basics

▸ Methods

▸ Arrays

▸ Operators

▸ Control Flow

3

Some slides adopted from Algorithms, 4th Edition and Oracle tutorials

JAVA BASICS

A possible implementation of a bicycle class in Java

/**
 * Represents a bicycle
 * @author https://docs.oracle.com/javase/tutorial/java/concepts/class.html
*/
public class Bicycle {

 //instance variables
 private int cadence = 0;
 private int speed = 0;
 private int gear = 1;

 public void changeCadence(int newValue) {
 cadence = newValue;
 }

 public void changeGear(int newValue) {
 gear = newValue;
 }

 public void changeSpeed(int change) {
 speed = speed + change;
 }

 public int getCadence() {
 return cadence;
 }

 public void printGear() {
 System.out.println("Gear:" + gear);
 }

 public String toString() {
 return "cadence:" + cadence + " speed:" + speed + " gear:" + gear;
 }
}

4

‣ All code in a Java program must belong to a class.
‣ // comment within a line.
‣ /* multi-line comment.*/
‣ /**documentation comment (JavaDoc).*/
‣ The source code is saved in .java files.
‣ The name of the class should match the name of

the source file e.g., Bicycle.java.
‣ Curly braces ({ and }) are used to surround

bodies of classes, methods, and loops.
‣ Statements end with a semicolon (;).
‣ Fields cadence, speed, gear represent the state of

a bicycle object.
‣ Methods changeCadence, changeGear, etc.

define how the object will interact with the world.
‣ System.out.println is Java’s way of printing a

string to the console.
‣ Override toString if you want to change how

objects are printed (similar to Python).
‣ To run your code you will need a special method

called main - there is no main in the Bicycle class.
‣ You can have a main method per class. Typically

one of them will control the program and the rest
will be used to test each class.

JAVA BASICS

Bicycle Demo program

/**
 * Basic demonstration of how to work with bicycle objects
 * @author https://docs.oracle.com/javase/tutorial/java/concepts/class.html
 *
 */

public class BicycleDemo {
 public static void main(String[] args) {

 // Create two different Bicycle objects
 Bicycle bike1 = new Bicycle();
 Bicycle bike2 = new Bicycle();

 System.out.println(bike1);

 // Invoke methods on those objects
 bike1.changeCadence(50);
 bike1.changeSpeed(10);
 bike1.changeGear(2);
 bike1.printGear();
 System.out.println(bike1);

 bike2.changeCadence(50);
 bike2.changeSpeed(10);
 bike2.changeGear(2);
 bike2.changeCadence(40);
 bike2.changeSpeed(-10);
 bike2.changeGear(3);
 bike2.printGear();
 System.out.println(bike1);
 System.out.println(bike2);

 }
}

5

‣ In the main method, we instantiate two objects of
type Bicycle with the new keyword, that is two
new bicycles are being brought into this world.

‣ Object name + dot operator + method/variable to
create a reference to an object’s method/field
‣ e.g., bike1.changeCadence(50);

‣ Void methods do not return anything.
‣ printGear is void

‣ System.out.println(someObject) calls the
toString method of the class someObject
belongs to.

WHAT WILL THIS PROGRAM PRINT?
cadence:0 speed:0 gear:1
Gear:2
cadence:50 speed:10 gear:2
Gear:3
cadence:50 speed:10 gear:2
cadence:40 speed:0 gear:3

JAVA BASICS

Access Modifiers

‣ public modifier - the field/method is accessible from all
classes.

‣ private modifier - the field/method is accessible only
within its own class.

‣ More that we will learn later…

6

JAVA BASICS

Variables

▸ Containers for storing data values.

▸ Java is statically-typed: all variables must be declared
along with their data type before they can be used.

▸ e.g., int cadence = 0;

▸ e.g., String name;

▸ Data types: primitives, classes, interfaces, and arrays.

7

JAVA BASICS

Instance variables (non-static or member fields)

▸ Declared in a class but outside of any method.

▸ Each object has its own unique copy of the variable. E.g.,

public class Bicycle {

 private int cadence = 0;
 private int speed = 0;
 private int gear = 1;  
}
▸ Invoked as myObject.variableName

▸ It’s always a good idea to keep them private.

8

JAVA BASICS

Static variables (class fields)

▸ Declared with the static modifier.

▸ All objects share the same copy. E.g.,

public class Bicycle {

 public static int numberOfBicycles;  
}
▸ Invoked as ClassName.variableName  

USE SPARINGLY!

9

JAVA BASICS

Local variables

▸ Declared within a method.

▸ Destroyed after the execution of the method.

▸ Can only be accessed within the method.

▸ No access modifier.

▸ public int countToTen() {

 int counter = 0;
 //…  
}

10

JAVA BASICS

Naming Variables

▸ Variable names are case-sensitive.

▸ CamelCase.

▸ No white space.

▸ Start with small letter.

▸ Subsequent characters can be letters, digits, $, or _.

▸ Use full words that make sense.

▸ If name contains more than two words, capitalize the first letter of each
subsequent word. e.g., numberOfBicycles.

▸ If your variable is a constant, capitalize everything. e.g., PI.

11

JAVA BASICS

Identifier

‣ The name of a class, interface, method, or variable.

‣ Each category has its own naming conventions.

12

JAVA BASICS

Primitive Data Types

▸ Java supports 8 primitive data types.

▸ Primitives use a small amount of memory to represent a single item of
data and support certain operations on its value.

▸ All data of same primitive data type use the same amount of memory.

▸ Cannot be used to instantiate type variables, that is no new keyword.

▸ Have corresponding object “wrapper” types:

▸ Integer, Double, Float, Boolean, etc.

▸ “Wrapper” types start with Capital letter: Integer vs int

13

JAVA BASICS

Primitive Data Types

14

Type Bits Default Example
byte 8 0 byte b = 10;
short 16 0 short s = 2;
int
Lo

32 0 int i = 47;
long 64 0L long l = 4747L;
float 32 0.0f float f = 47.0f;
double 64 0.0 double d = 47.0;
char 16 '\u0000' char c = 'a';

boolean 1 false boolean fun = true;
The compiler will assign default values to uninitialized instance and static fields.
If you do not initialize local variables you will run into a compile-time error!

JAVA BASICS

The most important primitive data types to know

▸ int - for integers.

▸ double - for real numbers.

▸ boolean - for the set of values {true, false}.

▸ char - for alphanumeric characters and symbols.

▸ STRINGS ARE NOT PRIMITIVES
▸ instead use class String.

15

JAVA BASICS

Classes

‣ Main data types in Java.

‣ e.g., String.

‣ Thousands more coming with Java by default.

‣ You can instantiate your own with the new keyword.

‣ Bicycle myBike = new Bicycle();

‣ Contain fields (can be a primitive or class type) and methods.

‣ Respond to messages to communicate with the outside world by invoking
methods.

‣ Reference default value is null.

16

JAVA BASICS

A vocabulary refresher for variables

‣ Declaration: state the type of variable and its identifier. A variable can only be declared
once. E.g., int x;

‣ Initialization: the first time a variable takes a value. E.g., x = 3;
‣ Can be combined with declaration, e.g., int y = 3;

‣ Assignment: discarding the old value and replacing it with a new. E.g., x = 2;
‣ Static or instance variables are automatically initialized with default values, i.e. null for

references to objects, 0 for int, false for boolean, etc.

‣ Local variables are not automatically initialized and your code won’t compile if you have
not initialized them and you are trying to use them. E.g.,

public void foo() {  
 int x;  
 System.out.println(x);  
 //The local variable x might not have been initialized 
}

17

JAVA BASICS

Practice Time

Consider the following class:

public class IdentifyMyParts {

 public static int x = 7;

 public int y = 3;

}

a. What are the class/static variables?

b. What are the instance/member variables?

c. What are a and b?

d. What is the output from the following code:

IdentifyMyParts a = new IdentifyMyParts();  
IdentifyMyParts b = new IdentifyMyParts();  
a.y = 5;  
b.y = 6;  
a.x = 1;  
b.x = 2;  
System.out.println("a.y = " + a.y);  
System.out.println("b.y = " + b.y);  
System.out.println("a.x = " + a.x);  
System.out.println("b.x = " + b.x);  
System.out.println("IdentifyMyParts.x = " + IdentifyMyParts.x);

JAVA BASICS

Answers

a. x

b. y

c. a.y = 5  
b.y = 6  
a.x = 2  
b.x = 2  
IdentifyMyParts.x = 2

https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/creating-answers.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Java Basics

▸ Methods

▸ Arrays

▸ Operators

▸ Control Flow

20

Some slides adopted from Algorithms, 4th Edition and Oracle tutorials

METHODS

Methods

‣ A collection of grouped statements that perform a logical operation and control the
behavior of objects.

‣ By convention method names should be a verb (+ noun) in lowercase.

‣ Syntax: modifier returnType methodName(type parameter-name,…){…}

‣ E.g., public int getCadence(){…return cadence;}

‣ Signature: method name and the number, type, and order of its parameters.

‣ Control goes back to the calling program as soon as a return statement is reached. If
it does not return anything it is void.

‣ Can also be static, therefore shared by all instances of a class.

‣ Can be overloaded (same name, different parameters).

21

METHODS

Constructors are invoked to create objects from class blueprints

‣ Constructor declarations look like method declarations but have the same
name with the class and no return type

// the Bicycle class has one constructor
 public Bicycle(int startCadence, int startSpeed, int startGear) {
 gear = startGear;
 cadence = startCadence;
 speed = startSpeed;
 }

‣ To instantiate a new object use the new keyword
Bicycle myBike = new Bicycle(30, 0, 8);

‣ A class can have multiple constructors, including a no-argument constructor
// the Bicycle class could have a no-argument constructor
 public Bicycle() {
 gear = 1;
 cadence = 10;
 speed = 0;
 }

Bicycle yourBike = new Bicycle();

22

YOU DON’T HAVE TO PROVIDE A CONSTRUCTOR BUT IT’S ALWAYS A GOOD IDEA TO DO SO

METHODS

this keyword

‣ Within an instance method or a constructor used to refer to current
object.

‣ Can be used to call instance variables, methods and constructors. E.g.,

public class Point {
 private int x = 0;
 private int y = 0;

 //constructor
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

23

METHODS

this keyword to invoke constructors

24

public class Rectangle {
private int x, y;
private int width, height;

public Rectangle() {
this(0, 0, 1, 1);

}

public Rectangle(int width, int height) {
this(0, 0, width, height);

}

public Rectangle(int x, int y, int width, int height) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;

}
}

VARIABLES

Parameters

▸ Variables passed in a method definition. You need to
specify their type. E.g.,

▸ int countToNumber(int number) {

 //…  
}
‣ The arguments are the data you pass into the method’s

parameters. E.g., countToNumber(3);

25

METHODS

Combination of instance/static variables/methods

‣ Instance methods can access instance variables and instance methods
directly.

‣ Instance methods can access static variables and static methods
directly.

‣ Static methods can access static variables and static methods directly.

‣ Static methods cannot access instance variables or instance methods
directly—they must use an object reference.

‣ E.g., “Cannot make a static reference to the non-static field” in
main method

‣ Static methods cannot use the this keyword as there is no instance of
an object for this to refer to.

26

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Java Basics

▸ Methods

▸ Arrays

▸ Operators

▸ Control Flow

27

ARRAYS

Array: Our first data structure

‣ Container object that holds a sequence of a fixed number of
values of the same type.

‣ The length of the array is established during its creation and
stays fixed.

‣ Each item is called an element and each element is
accessed by its index.

‣ If we have elements the indices range from .

‣ Similar to a Python list, with some differences

28

0...N − 1N

ARRAYS

Creating and initializing an array

1. Declare the array name and the type of its elements. E.g., double[] a;

2. Create the array. E.g., a = new double[N];

3. Initialize the array values. E.g.,
for (int i= 0; i<N; i++){  
 a[i]=10.0;  
}

‣ Default array initialization: We can combine all three steps into a single
statement and all elements will take the default values (0, false, or null
depending on type). E.g., double[] a = new double[N];

‣ Initializing declaration: List literal values between curly braces, separated by
comma. E.g., int[] b = {1,2,3};

29

ARRAYS

Using arrays

‣ Arrays have fixed size. We can access this size through its
instance variable length (tsk, tsk, Java). E.g., a.length

‣ You can access or change an element using the a[i]
notation.

‣ If you request an index that is either negative or larger
than length-1, then you will get an
ArrayIndexOutOfBoundsException.

30

ARRAYS

Multidimensional arrays

/**
 * Illustration of multidimensional arrays
 *
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
 *
 */
public class MultiDimArrayDemo {
 public static void main(String[] args) {
 String[][] names = {
 {"Mr. ", "Mrs. ", "Ms. "},
 {"King", "Park"}
 };
 // Mr. King
 System.out.println(names[0][0] + names[1][0]);
 // Mrs. Park
 System.out.println(names[0][1] + names[1][1]);
 // Ms. King
 System.out.println(names[0][2] + names[1][0]);
 }
}

31

ARRAYS

Aliasing

‣ An array name refers to the whole array — if we assign one
array name to another, then both refer to the same array.

‣ This can lead to aliasing problems.

int[] a = new int[N];  
a[i] = 1234;  
int[] b = a;  
b[i] = 5678; // a[i] is now 5678.

32

ARRAYS

Practice Time:

1. The term "instance variable" is another name for ___.

2. The term "class variable" is another name for ___.

3. A local variable stores temporary state; it is declared inside a ___.

4. A variable declared within the opening and closing parentheses of a method
signature is called a ____. The actual value passed is called an ___.

5. What are the eight primitive data types supported by the Java programming
language?

6. Character strings are represented by the class ___.

7. An ___ is a container object that holds a fixed number of values of a single
type.

33

ARRAYS

Answers:

1. The term "instance variable" is another name for non-static/member field.

2. The term "class variable" is another name for static field.

3. A local variable stores temporary state; it is declared inside a method.

4. A variable declared within the opening and closing parentheses of a method
is called a parameter. The actual value passed is called an argument.

5. What are the eight primitive data types supported by the Java programming
language? byte, short, int, long, float, double, boolean, char

6. Character strings are represented by the class java.lang.String.

7. An array is a container object that holds a fixed number of values of a single
type.

34

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_variables.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Java Basics

▸ Methods

▸ Arrays

▸ Operators

▸ Control Flow

35

OPERATORS

Operator precedence

36

Operators Precedence
postfix expr++ expr--
unary +/++expr -/--expr !boolean

multiplicative * / %
additive + -

relational < > <= >= instanceOf
equality == !=

logical AND &&
logical OR ||

assignment = += -= *= /=

OPERATORS

Assignment operator

▸ = assigns the value on its right to the operand on its left

▸ e.g., int cadence = 3;

37

OPERATORS

Arithmetic operators
/**
 * Illustration of the arithmetic operators
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html
 *
 */
public class ArithmeticDemo {

 public static void main (String[] args) {

 int result = 1 + 2;
 // result is now 3
 System.out.println("1 + 2 = " + result);
 int original_result = result;

 result = result - 1;
 // result is now 2
 System.out.println(original_result + " - 1 = " + result);
 original_result = result;

 result = result * 2;
 // result is now 4
 System.out.println(original_result + " * 2 = " + result);
 original_result = result;

 result = result / 2;
 // result is now 2
 System.out.println(original_result + " / 2 = " + result);
 original_result = result;

 result = result + 8;
 // result is now 10
 System.out.println(original_result + " + 8 = " + result);
 original_result = result;

 result = result % 7;
 // result is now 3
 System.out.println(original_result + " % 7 = " + result);
 }
}

38

Output:

1 + 2 = 3
3 - 1 = 2
2 * 2 = 4
4 / 2 = 2
2 + 8 = 10
10 % 7 = 3

OPERATORS

Unary operators require only one operand
/**
 * Illustration of the unary operators
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html
 *
 */
public class UnaryDemo {

 public static void main(String[] args) {

 int result = +1;
 // result is now 1
 System.out.println(result);

 result--;
 // result is now 0
 System.out.println(result);

 result++;
 // result is now 1
 System.out.println(result);

 result = -result;
 // result is now -1
 System.out.println(result);

 boolean success = false;
 // false
 System.out.println(success);
 // true
 System.out.println(!success);
 }
}

39

OPERATORS

The ++/-- operators can be applied pre or post operand
/**
 * Illustration of the prefix/postfix unary operator
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html
 *
 */
public class PrePostDemo {
 public static void main(String[] args){
 int i = 3;
 i++;
 // prints 4
 System.out.println(i);
 ++i;
 // prints 5
 System.out.println(i);
 // prints 6
 System.out.println(++i);
 // prints 6
 System.out.println(i++);
 // prints 7
 System.out.println(i);
 }
}

40

OPERATORS

Equality/Relational operators
/**
 * Illustration of the equality/relational operators
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html
 *
 */
public class ComparisonDemo {

 public static void main(String[] args){
 int value1 = 1;
 int value2 = 2;
 if(value1 == value2)
 System.out.println("value1 == value2");
 if(value1 != value2)
 System.out.println("value1 != value2");
 if(value1 > value2)
 System.out.println("value1 > value2");
 if(value1 < value2)
 System.out.println("value1 < value2");
 if(value1 <= value2)
 System.out.println("value1 <= value2");
 }
}

41

OPERATORS

Conditional operators
/**
 * Illustration of the equality/relational operators
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op1.html
 *
 */
public class ConditionalDemo {

 public static void main(String[] args){
 int value1 = 1;
 int value2 = 2;
 if((value1 == 1) && (value2 == 2))
 System.out.println("value1 is 1 AND value2 is 2");
 if((value1 == 1) || (value2 == 1))
 System.out.println("value1 is 1 OR value2 is 1");
 }

}

42

OPERATORS

Practice Time

43

1.Consider the following code:
arrayOfInts[j] > arrayOfInts[j+1]
Which operators does the code contain?

2.Consider the following code snippet:
int i = 10;  
int n = i++%5;
a.What are the values of i and n after the code is executed?
b.What are the final values of i and n if instead of using the postfix

increment operator (i++), you use the prefix version (++i))?
3.To invert the value of a boolean, which operator would you use?
4.Which operator is used to compare two values, = or == ?

OPERATORS

Answers:

44

1.>, +
2.

a. i is 11, and n is 0
b. i is 11, and n is 1.

3.The logical complement operator !
4.==

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/QandE/answers_operators.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Java Basics

▸ Methods

▸ Arrays

▸ Operators

▸ Control Flow

45

CONTROL FLOW

If-then statement

public void applyBrakes() {
 // the "if" clause: bicycle must be moving
 if (isMoving) { // condition must be inside parens
 // the "then" clause: decrease current speed
 currentSpeed--;
 }
}

46

CONTROL FLOW

If-then-else statement

/**
 * Illustration of the if then else control flow
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/if.html
 *
 */
public class IfElseDemo {
 public static void main(String[] args) {

 int testscore = 76;
 char grade;

 if (testscore >= 90) {
 grade = 'A';
 } else if (testscore >= 80) {
 grade = 'B';
 } else if (testscore >= 70) {
 grade = 'C';
 } else if (testscore >= 60) {
 grade = 'D';
 } else {
 grade = 'F';
 }
 System.out.println("Grade = " + grade);
 }
}

47

ONCE A CONDITION IS SATISFIED, THE APPROPRIATE STATEMENTS ARE EXECUTED AND THE
REMAINING CONDITIONS ARE NOT EVALUATED.

CONTROL FLOW

While statement

/**
 * Illustration of the if then else control flow
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/while.html
 *
 */
public class WhileDemo {

 public static void main(String[] args){
 int count = 1;
 while (count < 11) {
 System.out.println("Count is: " + count);
 count++;
 }
 }
}

48

CONTROL FLOW

For statement

for (initialization; termination; increment) {
 statement(s)
}

/**
 * Illustration of the for loop
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html
 *
 */
public class ForDemo {
 public static void main(String[] args){
 for(int i=1; i<11; i++){
 System.out.println("Count is: " + i);
 }
 }
}

49

CONTROL FLOW

Enhanced for statement in most data structures

/**
 * Illustration of the enhanced for flow
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html
 *
 */
class EnhancedFor {
 public static void main(String[] args){
 int[] numbers =
 {1,2,3,4,5,6,7,8,9,10};
 for (int item : numbers) {
 System.out.println("Count is: " + item);
 }
 }
}

50

CONTROL FLOW

Break statement

‣ Use break to terminate a for or while loop.

/**
 * Illustration of the break branch
 *
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html
 *
 */
public class BreakDemo {

public static void main(String[] args) {

int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076, 2000, 8, 622, 127 };
int searchfor = 12;

int i;
boolean foundIt = false;

for (i = 0; i < arrayOfInts.length; i++) {
if (arrayOfInts[i] == searchfor) {

foundIt = true;
break;

}
}

if (foundIt) {
System.out.println("Found " + searchfor + " at index " + i);

} else {
System.out.println(searchfor + " not in the array");

}
}

}

51

CONTROL FLOW

Continue statement

‣ Use continue to skip the current iteration of for or while loop.
 * Illustration of the continue branch
 *
 * @author https://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html
 *
 */
public class ContinueDemo {
 public static void main(String[] args) {

 String searchMe = "peter piper picked a " + "peck of pickled peppers";
 int max = searchMe.length();
 int numPs = 0;

 for (int i = 0; i < max; i++) {
 // interested only in p's
 if (searchMe.charAt(i) != 'p')
 continue; // What happens if we used a break here?

 // process p's
 numPs++;
 }
 System.out.println("Found " + numPs + " p's in the string.");
 }
}

52

CONTROL FLOW

Return statement

‣ The return statement exits from the current method, and
control flow returns to where the method was invoked.

‣ Can return a value, e.g., return counter++;

‣ Or not, e.g., return;

53

TODAY’S LECTURE IN A NUTSHELL

Lecture 2: Java Basics

▸ Methods

▸ Arrays

▸ Operators

▸ Control Flow

54

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ Language Basics: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html

▸ Textbook:

▸ Chapter 1.1 (Pages 8–35)

▸ Chapter 1.2 (Pages 64–77, 84—88, 96—99)

55

Practice Problems:

▸ 1.1.1–1.1.5, 1.1.8–1.1.12, 1.2.4,1.2.8

