
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

18: Binary Search Trees

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Tom Yeh
he/him/his

2

BINARY HEAP RECAP

Things to remember about runtime complexity of heaps

3

▸ Insertion is . Why?

▸ Delete max is . Why?

▸ Space efficiency is . Why?

▸ Array with complete tree

O(log n)

O(log n)

O(n)

TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Priority Queues, Heapsort, BST

▸ Binary Heaps

▸ Priority Queue

▸ Heapsort

4

PRIORITY QUEUE

Priority Queue ADT

▸ Service best element first

▸ Compared to FIFO or LIFO

▸ Two operations:

▸ Delete (return) the maximum

▸ Insert

▸ Applications: load balancing and interruption handling in OS, Huffman codes for
compression, A* search for AI, Dijkstra’s and Prim's algorithm for graph search, etc.

▸ How can we implement a priority queue efficiently?

▸ Unordered array, Ordered array, Binary Heap

5

PRIORITY QUEUE IMPLEMENTATION

Option 1: Unordered array

▸ The lazy approach where we defer doing work (deleting
the maximum) until necessary.

▸ Insert is (will be implemented as push in stacks).

▸ Delete maximum is (have to traverse the entire array
to find the maximum element).

O(1)

O(n)

6

PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public UnorderedArrayMaxPQ(int capacity) {
 pq = (Key[]) new Comparable[capacity];
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public void insert(Key x) { pq[n++] = x; } // Insert into index n

 public Key delMax() {
 int max = 0;
 for (int i = 1; i < n; i++)
 if (less(max, i)) max = I; // Find max element
 exch(max, n-1); // Exchange max with last element

 return pq[—n]; // Return last element
 }
 private boolean less(int i, int j) {
 return pq[i].compareTo(pq[j]) < 0;
 }

 private void exch(int i, int j) {
 Key swap = pq[i];
 pq[i] = pq[j];
 pq[j] = swap;
 }
}

7

PRIORITY QUEUE 8

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
unordered array (lazy approach):

PRIORITY QUEUE 9

Answer

PRIORITY QUEUE

Option 2: Ordered array

▸ The eager approach where we do the work (keeping the
list sorted) up front to make later operations efficient.

▸ Insert is (we have to find the index to insert and shift
elements to perform insertion).

▸ Delete maximum is (just take the last element which
will the maximum).

O(n)

O(1)

10

PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public OrderedArrayMaxPQ(int capacity) {
 pq = (Key[]) (new Comparable[capacity]);
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public Key delMax() { return pq[--n]; }

 public void insert(Key key) {
 int i = n-1;
 while (i >= 0 && less(key, pq[i])) {
 pq[i+1] = pq[i]; // Empty element is at index i
 i--;
 }
 pq[i+1] = key; // I+1 to get to the empty element
 n++;
 }

 private boolean less(Key v, Key w) {
 return v.compareTo(w) < 0;
 }

11

PRIORITY QUEUE 12

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
ordered array (eager approach):

PRIORITY QUEUE 13

Answer

PRIORITY QUEUE

Option 3: Binary heap

▸ Will allow us to both insert and delete max in
running time.

▸ There is no way to implement a priority queue in such a
way that insert and delete max can be achieved in
running time.

▸ Priority queues are synonyms to binary heaps.

O(log n)

O(1)

14

PRIORITY QUEUE 15

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty binary heap that represents a priority
queue, perform the following operations:

PRIORITY QUEUE 16

Answer

TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Priority Queues and Heapsort

▸ Priority Queue

▸ Heapsort

17

HEAPSORT

Basic plan for heap sort

18

▸ Use a priority queue to develop a sorting method that
works in two steps:

▸ 1) Heap construction: build a binary heap with all keys
that need to be sorted.

▸ 2) Sortdown: repeatedly remove and return the maximum
key.

n

HEAPSORT

 Heap constructionO(n)

19

▸ Construct complete binary tree with elements

▸ Ignore all leaves (indices n/2+1,…,n).

▸ for(int k = n/2; k >= 1; k--)  
 sink(a, k, n);

▸ Key insight: After sink(a,k,n) completes, the subtree rooted at k
is a heap.

a)

b)

c)

d)

e)

f)

HEAPSORT 20

Practice Time

▸ Run the first step of heapsort, heap construction, on the
array [2,9,7,6,5,8].

HEAPSORT 21

Answer: Heap construction

HEAPSORT

Sortdown

22

‣ Remove the maximum, one at a time, but leave in array
instead of nulling out.

▸ while(n>1){  
 exch(a, 1, n--);  
 sink(a, 1, n);  
}

▸ Key insight: After each iteration the array consists of a
heap-ordered subarray followed by a sub-array in final
order.

HEAPSORT

Sortdown

23

▸ while(n>1){  
 exch(a, 1, n--);  
 sink(a, 1, n);  
}

HEAPSORT 24

HEAPSORT 25

Practice Time

▸ Given the heap you constructed before, run the second
step of heapsort, sortdown, to sort the array
[2,9,7,6,5,8].

HEAPSORT 26

Answer: Sortdown

HEAPSORT

Heapsort analysis

27

▸ Heap construction makes exchanges and compares.

▸ Sortdown and therefore the entire heap sort exchanges and compares.

▸ In-place sorting algorithm with worst-case!

▸ Remember:

▸ mergesort: not in place, requires linear extra space.

▸ quicksort: quadratic time in worst case.

▸ Heapsort is optimal both for time and space in terms of Big-O, but:

▸ Inner loop longer than quick sort.

▸ Poor use of cache. Why?

▸ Not stable.

O(n) O(n)

O(n log n)

O(n log n)

HEAPSORT

Sorting: Everything you need to remember about it!

Which Sort In
place

Stable Best Average Worst Remarks

Selection X exchanges

Insertion X X Use for small arrays
or partially ordered

Merge X Guaranteed
performance; stable

Quick X probabilistic
guarantee; fastest!

Heap X Guaranteed
performance; in place

O(n2) O(n2) O(n2) n

O(n2) O(n2)O(n)

O(n log n) O(n log n) O(n log n)

28

O(n log n) O(n log n) O(n2)
n log n

O(n log n) O(n log n) O(n log n)

TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Priority Queues and Heapsort

▸ Priority Queue

▸ Heapsort

29

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 2.4 (Pages 308-327), 2.5 (336-344)

▸ Website:

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/

▸ Visualization:

▸ Create (nlogn) and heapsort: https://visualgo.net/en/heap

30

Practice Problems:

▸ 2.4.1-2.4.11. Also try some creative problems.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 2.4 (Pages 308-327)

▸ Website:

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/

▸ Visualization:

▸ Insert and ExtractMax: https://visualgo.net/en/heap

31

Practice Problems:

▸ Practice with traversals of trees and insertions and deletions in binary heaps

TEXT 32

TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Search

▸ Dictionaries (Symbol Tables)

▸ Binary Search Trees

33

Some slides adopted from Algorithms 4th Edition or COS226

DICTIONARIES

Dictionaries

▸ Also known as: symbol tables, maps, indices, associative
arrays.

▸ Key-value pair abstractions that support two operations:

▸ Insert a key-value pair.

▸ Given a key, search for the corresponding value.

▸ Supported either with built-in or external libraries by the
majority of programming languages.

34

DICTIONARIES

Basic symbol table API

▸ public class ST <Key extends Comparable<Key>, Value>

▸ Key needs to implement the Comparable interface, but it is a generic (use extends)

▸ ST(): create an empty symbol table. By convention, values are not null.

▸ void put(Key key, Value val): insert key-value pair.

▸ Overwrites old value with new value if key already exists.

▸ Value get(Key key): return value associated with key.

▸ Returns null if key not present. Can’t distinguish between null values and non-existent pairs

▸ boolean contains(Key key): is there a value associated with key?

▸ Iterable keys(): all the keys in the symbol table.

▸ void delete(Key key): delete key and associated value.

▸ boolean isEmpty(): is the symbol table empty?

▸ int size(): number of key-value pairs.

35Application Key Value

Phonebook Name Phone
numberererWeb search Keyword List of page

namesBook index Term List of page
numbersCompiler Variable Type & Value

DICTIONARIES

Ordered symbol tables

36

DICTIONARIES

Ordered symbol table API

▸ Key min(): smallest key.

▸ Key max(): largest key.

▸ Key floor(Key key): largest key less than or equal to given key.

▸ Key ceiling(Key key): smallest key greater than or equal to given key.

▸ int rank(Key key): number of keys less that given key.

▸ Key select(int k): key with rank k.

▸ Iterable keys(): all keys in symbol table in sorted order.

▸ Iterable keys(int lo, int hi): keys in [lo, …, hi] in sorted order.

37

DICTIONARIES

Printed symbol tables are all around us

▸ Dictionary: key = word, value = definition.

▸ Encyclopedia: key = term, value = article.

▸ Phonebook: key = name, value = phone number.

▸ Math table: key = math functions and input,
value = function output.

▸ Unsupported operations:

▸ Add a new key and associated value.

▸ Remove a given key and associated value.

▸ Change value associated with a given key.

38

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Binary Search Trees

▸ Dictionaries

▸ Unordered linked lists (Node with key and value)

▸ Insertion and search are linear

▸ Sorted array for keys and parallel array for values

▸ Search is logarithmic, but insertion is linear

▸ Binary search Trees

39

BINARY SEARCH TREES

Definitions

▸ Binary Search Tree: A binary tree in symmetric order.

▸ Symmetric order: Each node has a key, and every node’s
key is:

▸ Larger than all keys in its left subtree.

▸ Smaller than all keys in its right subtree.

▸ Our textbook uses BSTs to implement dictionaries,
therefore each node holds a key-value pair. Other
implementations hold only a key.

40

BINARY SEARCH TREES

Differences between heaps and BSTs

*: when BSTs used to implement dictionaries.

41

Heap BST

Used to implement Priority queues Dictionaries

Supported operations Insert, delete max insert, search, delete,
ordered operations

What is inserted Keys Key-value pairs

Underlying data structure (Resizing) array Linked nodes

Tree shape Complete binary tree Depends on data

Ordering of keys Heap-ordered Symmetrically-ordered

Duplicate keys allowed? Yes No*

BINARY SEARCH TREES

BST representation of dictionaries

42

▸ We will use an inner class Node that is composed by:

▸ A Key that is comparable and a Value

▸ A reference to the root nodes of the left (smaller keys)
and right (larger keys) subtrees.

▸ Potentially, the total number of nodes in the subtree that
has root at this node.

▸ A BST has a reference to a Node root.

BINARY SEARCH TREES

BST and Node implementation

43

public class BST<Key extends Comparable<Key>, Value> {
 private Node root; // root of BST

 private class Node {
 private Key key; // sorted by key
 private Value val; // associated value
 private Node left, right; // roots of left and right subtrees
 private int size; // #nodes in subtree rooted at this

 public Node(Key key, Value val, int size) {
 this.key = key;
 this.val = val;
 this.size = size;
 }
 }

BINARY SEARCH TREES

Search for a key

44

▸ If less than key in node go to left subtree.

▸ If greater than key in node go to right subtree.

▸ If given key and key at examined node are equal, search hit.

▸ Return value corresponding to given key, or null if no such key.

▸ In other implementations, you return the last node you
reached.

▸ Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

Search example

45

BINARY SEARCH TREES

Search - iterative implementation

46

▸ public Value get(Key key) {  
 Node x = root;  
 while (x != null) {  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 x = x.left;  
 else if (cmp > 0)  
 x = x.right;  
 else if (cmp == 0)  
 return x.val;  
 }  
 return null;  
}

BINARY SEARCH TREES

Search - recursive implementation

47

‣ public Value get(Key key) {  
 return get(root, key);  
}

‣ private Value get(Node x, Key key) {  
 if (x == null)  
 return null;  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 return get(x.left, key);  
 else if (cmp > 0)  
 return get(x.right, key);  
 else  
 return x.val;  
}

BINARY SEARCH TREES

Practice Time

▸ Search for the keys 4 and 9 in the following BST:

48

BINARY SEARCH TREES

Insert

49

▸ If less than key in node go left.

▸ If greater than key in node go right.

▸ If null, insert.

▸ If already exists, update value.

▸ Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

Insert example

50

BINARY SEARCH TREES

Insert

51

▸ public void put(Key key, Value val) {  
 root = put(root, key, val);  
}  
private Node put(Node x, Key key, Value val) {  
 if (x == null)  
 return new Node(key, val, 1);  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 x.left = put(x.left, key, val);  
 else if (cmp > 0)  
 x.right = put(x.right, key, val);  
 else  
 x.val = val;  
 x.size = 1 + size(x.left) + size(x.right);  
 return x;  
}

BINARY SEARCH TREES

Practice Time

▸ Add the key-value pairs (4,3) and (9,2) in the following
BST:

52

53

BINARY SEARCH TREES

Tree shape

54

▸ The same set of keys can result to different BSTs based on
their order of insertion.

▸ Number of compares for search/insert is equal to depth of
node +1.

BINARY SEARCH TREES

BSTs mathematical analysis

55

▸ If distinct keys are inserted into a BST in random order, the
expected number of compares of search/insert is .

▸ If distinct keys are inserted into a BST in random order, the
expected height of tree is . [Reed, 2003].

▸ Worst case height is but highly unlikely.

▸ Keys would have to come (reversely) sorted!

▸ All ordered operations in a dictionary implemented with a BST
depend on the height of the BST.

n
O(log n)

n
O(log n)

n

BINARY SEARCH TREES

Hibbard deletion: Delete node which is a leaf

56

▸ Simply delete node.

▸ Example: delete 52 locates a node which is a leaf and removes it.

BINARY SEARCH TREES

Hibbard deletion: Delete node with one child

57

▸ Delete node and replace it with its child.

▸ Example: delete 70 locates a node which has one child and replaces it with the child.

BINARY SEARCH TREES

Hibbard deletion: Delete node with two children

58

▸ Delete node and replace it with successor (node with smallest of the larger keys).
Move successor’s child (if any) where successor was.

▸ Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst

BINARY SEARCH TREES 59

 public void delete(Key key) {
 root = delete(root, key);
 }

 private Node delete(Node x, Key key) {
 if (x == null) return null;

 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = delete(x.left, key);
 else if (cmp > 0)  
 x.right = delete(x.right, key);
 else {
 if (x.right == null)
 return x.left;
 if (x.left == null)
 return x.right;
 Node t = x; //replace with successor
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.size = size(x.left) + size(x.right) + 1;
 return x;
 }

BINARY SEARCH TREES

Practice Time

▸ Delete the node 21 following Hibbard’s deletion

60

BINARY SEARCH TREES

Answer

▸ Delete the node 21 following Hibbard’s deletion

61

BINARY SEARCH TREES

Hibbard’s deletion

62

▸ Unsatisfactory solution. If we were to perform many insertions and deletions
the BST ends up being not symmetric and skewed to the left.

▸ Extremely complicated analysis, but average cost of deletion ends up
being . Let’s simplify things by saying it stays .

▸ No one has proven that alternating between the predecessor and
successor will fix this.

▸ Hibbard devised the algorithm in 1962. Still no algorithm for efficient
deletion in Binary Search Trees!

▸ Overall, BSTs can have worst-case for search, insert, and delete. We
want to do better (see future lectures).

n O(log n)

O(n)

TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Binary Search Trees

▸ Dictionaries

▸ Binary Search Trees

63

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapters 3.1 (Pages 362—386) and 3.2 (Pages 396–414)

▸ Website:

▸ https://algs4.cs.princeton.edu/31elementary/

▸ https://algs4.cs.princeton.edu/32bst/

▸ Visualization:

▸ https://visualgo.net/en/bst

64

Practice Problems:

▸ 3.1.1-3.1.6, 3.2.1-3.2.13

