B
35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

18: Binary Search Trees

Tom Yeh
he/him/his

A l go ri thm S ROBERT SEDGEWICK | KEVIN WAYNE

2.4 BINARY HEAP DEMO

Algorithms

RORERT SEDGEWICK | KEvIN WAYNE

http://algs4.cs.princeton.edu

BINARY HEAP RECAP

Things to remember about runtime complexity of heaps

» Insertion is O(log n). Why?
» Delete maxis O(logn). Why?
» Space efficiency is O(n). Why?

» Array with complete tree

TODAY'S LECTURE IN A NUTSHELL

Lecture 18: Priority Queues, Heapsort, BST

» Binary Heaps
» Priority Queue

» Heapsort

PRIORITY QUEUE

Priority Queue ADT

» Service best element first

» Compared to FIFO or LIFO

» Two operations:

» Delete (return) the maximum

» Insert

» Applications: load balancing and interruption handling in OS, Huffman codes for
compression, A* search for Al, Dijkstra’s and Prim's algorithm for graph search, etc.

» How can we implement a priority queue efficiently?

» Unordered array, Ordered array, Binary Heap

PRIORITY QUEUE IMPLEMENTATION
Option 1: Unordered array

» The lazy approach where we defer doing work (deleting
the maximum) until necessary.

» Insertis O(1) (will be implemented as push in stacks).

» Delete maximum is O(n) (have to traverse the entire array
to find the maximum element).

PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {

private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public UnorderedArrayMaxPQ(int capacity) {

pq = (Key[]) new Comparable[capacity];

n=0;

}

public boolean isEmpty() { return n == 0;
public int size() { return n; }
public void insert(Key x) { pqln++] = x; } // Insert into index n

public Key delMax() {
int max = 0;
for (int i = 1; 1 < n; i++)

if (less(max, 1)) max = I; // Find max element
exch(max, n-1); // Exchange max with last element
return pq[-n]; // Return last element

}

private boolean less(int i, int j) {
return pq[i].compareTo(pql[jl) < O;
ks

private void exch(int i, int j) {
Key swap = pq[i];
pali] = pqli];
palj] = swap;

PRIORITY QUEUE

0 £ R 3 4 56 F 8 9
Practice Time

» Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
unordered array (lazy approach):

1. Insert P /. Insert M
2. Insert Q 8. Delete max
3. InsertE 9. InsertP
4. Delete max 10. Insert L
5. Insert X 11. Insert E

6. Insert A 12. Delete max

PRIORITY QUEUE

Answer

p

0 L & 3 4 56
Pl @A

0O 4 R 3 4 5 6
PIQ|E

0 1L X 3 4 56
P|E|IB

0 41 X 3 4 56
PlE X

0 4L X 3 4 56
PIEDS A

0 L R 3 4 5 6
PLEDSAIM

0 4L X 3 4 56
PlEWMIAIX

0 4L X 3 4 56
PIEMIAY

0 41 X 3 4 56
PIEMAIPIL
0 4L X 3 4 56
PlEMIAIPILIE
0 4 R 3 4 56
EIEMIAIPIL
0 41 X 3 4 56

(msert

insert Q)

insert £

delete -maX = Q)
imser t 9(

imsert A

imsert M
delete-max -
imsert P

imsert |

imsert £
delete-marx->P

PRIORITY QUEUE 10

Option 2: Ordered array

» The eager approach where we do the work (keeping the
list sorted) up front to make later operations efficient.

» Insertis O(n) (we have to find the index to insert and shift
elements to perform insertion).

» Delete maximum is O(1) (just take the last element which
will the maximum).

PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public OrderedArrayMaxPQ(int capacity) {

pg = (Key[]) (new Comparable[capacity]);

n=0;

public boolean isEmpty() { return n == 0; }
public int size() { return n; }
public Key delMax() { return pq[--n]; }

public void insert(Key key) {
int 1 = n-1;
while (i >= 0 && less(key, pq[i])) {

pg[i+1] = pq[il; // Empty element is at index 1
1--3
}
pq[i+1l] = key; // I+1 to get to the empty element
N++;

}

private boolean less(Key v, Key w) {
return v.compareTo(w) < 0;

}

11

PRIORITY QUEUE

Practice Time

0 £ R 3 4 56 F 8 9

» Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
ordered array (eager approach):

1.

> W D

Insert P
Insert Q
Insert E
Delete max
Insert X

Insert A

/. Insert M

8. Delete max

Q. InsertP
10. Insert L
11. Insert E

12. Delete max

12

PRIORITY QUEUE

Answer

X

N

U]

b4

"

O O

()]

o:\>o:\>o:F.o:\>o;\>O:\>OJ>omomomo—ooﬂo

AN e AR T QR R AR A R (R Rt (Na ol R ISR Rl IO Rl AR Rl (D
2[00 | 0[=] 0|2 | o] B[R | 0| F| D] 0

| ||| W= | WO | WO Wo| Wh | W

aat el ool K BN ol e B

N oW o W0

imsert I 13

imsert &

insert £

delete -max -
imsert 9(

imsert A

imsert M
delete-max X
imsert

imsert |

insert £
delete-marx—>P

PRIORITY QUEUE 14
Option 3: Binary heap
» Will allow us to both insert and delete max in O(log n)

running time.

» There is no way to implement a priority queue in such a

way that insert and delete max can be achieved in O(1)
running time.

» Priority queues are synonyms to binary heaps.

PRIORITY QUEUE

Practice Time

» Given an empty binary heap that represents a priority
queue, perform the following operations:

1. Insert P /. Insert M
2. Insert Q 8. Delete max
3. InsertE 9. InsertP
4. Delete max 10. Insert L
5. Insert X 11. Insert E

6. Insert A 12. Delete max

PRIORITY QUEUE

16

Answer

insert P @

insert Q
P)
insert E d@
©
remove max (Q)
Q

insert X

insert A) 0

(X)
insert M % P)

remove max (X) @g/ \

®<\

insert L 0

insert E 0 o

TODAY'S LECTURE IN A NUTSHELL

17

Lecture 18: Priority Queues and Heapsort

» Priority Queue

» Heapsort

HEAPSORT 18
Basic plan for heap sort

» Use a priority queue to develop a sorting method that
works in two steps:

» 1) Heap construction: build a binary heap with all n keys
that need to be sorted.

» 2) Sortdown: repeatedly remove and return the maximum
key.

HEAPSORT 19
O(n) Heap construction

» Construct complete binary tree with elements

» Ignore all leaves (indices n/2+1,...,n).

» for(int k = n/2; k >= 1; k--)
sink(a, k, n);

» Key insight: After sink(a,k,n) completes, the subtree rooted at k

is a heap. o
S1NK y 11

heap construction

sink(4, 11)
a) c) e)
® ®
starting point (arbitrary order,
sink(3, 11)

sink(5, 11)

b) é%@ d) ®) ®

result (heap-ordered)

HEAPSORT

Practice Time

» Run the first step of heapsort, heap construction, on the
array [2,9,7,6,5,8].

20

HEAPSORT

Answer: Heap construction

2 3\@
4 /s- t / / £ /
@ @@ 4 s@@
?ﬁ‘iﬁ%iﬁz’;) p=n/2=6/223

/ sink(3,6)
A N
4oL 4
'@ 1@ OB
L= 2 L=1{

S(Y\\QC Q(é) 8*/1!&(.(76)
e [W,of’orcier@>

Poe B

21

HEAPSORT
Sortdown

* Remove the maximum, one at a time, but leave in array
instead of nulling out.

» while(n>1){
exch(Ca, 1, n--);
sink(Ca, 1, n);

5

» Key insight: After each iteration the array consists of a
heap-ordered subarray followed by a sub-array in final
order.

22

HEAPSORT

Sortdown

» while(n>1){
exch(Ca, 1, n--);
sink(Ca, 1, n);

¥

sortdown

el 8 %@D\@ 23
& 0

exch(l, 5)
sink(1, 4)(:)”’,¢—(:)\\(:)
[S)

&w @&

exch(l, 11)
sink(1, 10)

@ E) & X
h(1l, 10 h(1l, 4
esxicnl-c((l. 9)) 9 (snw(gkgl 3% e
(R) (A) E)

©® ® L

exch(l, 9) Q exch(l, 3) ©

sink(1, 8) sink(1, 2)
o & e

h(1, 8 h(1, 2
Sinkdl, 7 ® Sk B ®
(0) E) E
(M) L ® ®

R

h(l, 7) 1
Sink(L, 6) O A
(M) ’E ‘E
(A) L P “L M "o 7p

SR QS lDT llx

result (sorted)

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

HEAPSORT

Practice Time

» Given the heap you constructed before, run the second

step of heapsort, sortdown, to sort the array
[2,9,7,6,5,8].

25

HEAPSORT

Answer: Sortdown

| i/ i 26
AP A

3{’&1’%7’7’7 POZ)’?IL 6>€LL[_L 4
[//u,aofjoro/&rfo/ Sk, 5_))

B ’
@5@\“@9@ 6

4@
g 9 7 5 9
exch({ 5) & 5 L

xxh ({4 exch ({3)
S‘”“ia ;nt(l 5>) sink(1,2)
2 <
= 6 —> 25 36
¥ q
sF 8 6

W!(
;)ft (111%) result(sorted)

HEAPSORT

Heapsort analysis

» Heap construction makes O(n) exchanges and O(n) compares.
» Sortdown and therefore the entire heap sort O(nlog n) exchanges and compares.
» In-place sorting algorithm with O(n log n) worst-case!
» Remember:
» mergesort: not in place, requires linear extra space.
» quicksort: quadratic time in worst case.
» Heapsort is optimal both for time and space in terms of Big-O, but:
» Inner loop longer than quick sort.
» Poor use of cache. Why?

» Not stable.

27

HEAPSORT 28

Sorting: Everything you need to remember about it!

Which Sort In Stable Best Average Worst Remarks
place
Selection X 0(n2) 0(n2) 0(n2) N exchanges
: O(n 2 2 Use for small arrays
Insertion X (m) O(z) O(z) or partially ordered
Guaranteed
1 1 1
Merge Olnlogn)|Onlogn) | Olnlogn) performance; stable
: nlogn probabilistic
Quick A O(nlogn) O(nlogn) 0(712) guarantee; fastest!
Hea X Guaranteed
P O(nlogn) |O(n logn) | O(nlogn) |performance; in place

TODAY'S LECTURE IN A NUTSHELL

29

Lecture 18: Priority Queues and Heapsort

» Priority Queue

» Heapsort

ASSIGNED READINGS AND PRACTICE PROBLEMS

30

Readings:

» Textbook:
» Chapter 2.4 (Pages 308-327), 2.5 (336-344)
» Website:

» Priority Queues: https://algs4.cs.princeton.edu/24pg/

» Visualization:

» Create (nlogn) and heapsort: https://visualgo.net/en/heap

Practice Problems:

» 2.4.1-2.4.11. Also try some creative problems.

ASSIGNED READINGS AND PRACTICE PROBLEMS

31

Readings:

» Textbook:
» Chapter 2.4 (Pages 308-327)
» Website:

» Priority Queues: https://algs4.cs.princeton.edu/24pg/

» Visualization:

» Insert and ExtractMax: https://visualgo.net/en/heap

Practice Problems:

» Practice with traversals of trees and insertions and deletions in binary heaps

TEXT

32

TODAY'S LECTURE IN A NUTSHELL

33

Lecture 18: Search

» Dictionaries (Symbol Tables)

» Binary Search Trees

Some slides adopted from Algorithms 4th Edition or COS226

DICTIONARIES 34

Dictionaries

» Also known as: symbol tables, maps, indices, associative
arrays.

» Key-value pair abstractions that support two operations:
» Insert a key-value pair.
» Given a key, search for the corresponding value.

» Supported either with built-in or external libraries by the
majority of programming languages.

DICTIONARIES 35

Phonebook Name Phone
. Web search Keyword List of page
Basic symbol table API
Book index Term List of page
Compiler Variable Type & Value

» public class ST <Key extends Comparable<Key>, Value>
» Key needs to implement the Comparable interface, but it is a generic (use extends)

» ST(): create an empty symbol table. By convention, values are not null.
» void put(Key key, Value val):insert key-value pair.
» Overwrites old value with new value if key already exists.
» Value get(Key key): return value associated with key.
» Returns null if key not present. Can't distinguish between null values and non-existent pairs
» boolean contains(Key key): is there a value associated with key?
» Iterable keys(): all the keys in the symbol table.
» void delete(Key key): delete key and associated value.
» boolean isEmpty():isthe symbol table empty?

» int size(): number of key-value pairs.

DICTIONARIES

Ordered symbol tables

keys

values

min(Q—=09:00:00 Chicago
09:00:03 Phoenix

09: Houston
get (09:00: 13)/1)9'6_0;3'

09:

floor({09:05:00)—09:
09:

select(7)—=09:

09:
09:
09:
121
09:
09:
09:

keys(09:15:00, 09:25:00)— |09

ceiling(09:30:00)—= 09

09:

max()— (09

$1ze(09:15:00, 09:25:00) is 5
rank(09:10:25) s 7

01:
03:
10:
10:
14:
19:
19:
:05
22:
22:
r i1
X 1
36:
i

10
13
11
25
25
32
46

43
54
52
21
14
44

Chicago
Houston
Chicago
Seattle
Seattle
Phoenix
Chicago
Chicago
Chicago
Seattle
Seattle
Chicago
Chicago
Seattle
Phoenix

DICTIONARIES 37

Ordered symbol table API

» Key min(): smallest key.

» Key max(): largest key.

» Key floor(Key key): largest key less than or equal to given key.

» Key ceiling(Key key): smallest key greater than or equal to given key.
» 1nt rank(Key key): number of keys less that given key.

» Key select(int k): key with rank k.

» Iterable keys(): all keys in symbol table in sorted order.

» Iterable keys(int lo, int hi):keysin [lo, .., hi] insorted order.

DICTIONARIES

Printed symbol tables are all around us

S|1()|‘l\f
Oxford i
EngliSh

|)n~[i()1h154.\

» Dictionary: key = word, value = definition.

» Encyclopedia: key = term, value = article.

W A VNOILLDICT 558

£ 'A}lv.n\f(MLICT 558

» Phonebook: key = name, value = phone number.

» Math table: key = math functions and input,
value = function output.

A

HOOH A 1HOM
& 004 (g RO

» Unsupported operations:

=W A0S UTIOW

-0
| -i"'.

WEE 0Gs GO

my 0
T
ite
ige |

(oo

— QAME FIIEAA
.Emm o] $:0 R 4] v
.

» Add a new key and associated value.

om-=m "

O AT 5:5CE GOV
O~ - sos oV
- -

V-

 liue

S e)
ire B .
i
AA

» Remove a given key and associated value.

» Change value associated with a given key.

TODAY'S LECTURE IN A NUTSHELL

39

Lecture 23: Binary Search Trees

» Dictionaries
» Unordered linked lists (Node with key and value)
» Insertion and search are linear
» Sorted array for keys and parallel array for values
» Search is logarithmic, but insertion is linear

» Binary search Trees

parent of A and R

k':l,}f.

BINARY SEARCH TREES left link 4 40
of E T—_ e
Q AN — value
Definitions © g
f X
keys smaller than € keys Izz;ger than E

» Binary Search Tree: A binary tree in symmetric order.

» Symmetric order: Each node has a key, and every node’s
key is:

» Larger than all keys in its left subtree.
» Smaller than all keys in its right subtree.

» Our textbook uses BSTs to implement dictionaries,
therefore each node holds a key-value pair. Other
implementations hold only a key.

BINARY SEARCH TREES

Differences between heaps and BSTs

41

Heap BST
Used to implement Priority queues Dictionaries
Supported operations Insert, delete max ir:r::’r :Zaor;:r:tei:)e::’
What is inserted Keys Key-value pairs
Underlying data structure (Resizing) array Linked nodes
Tree shape Complete binary tree Depends on data
Ordering of keys Heap-ordered Symmetrically-ordered
Duplicate keys allowed? Yes No*

*: when BSTs used to implement dictionaries.

BINARY SEARCH TREES 42
BST representation of dictionaries

» We will use an inner class Node that is composed by:
» AKey thatis comparable and a Value

» Areference to the root nodes of the left (smaller keys)
and right (larger keys) subtrees.

» Potentially, the total number of nodes in the subtree that
has root at this node.

» A BST has a reference to a Node root.

BINARY SEARCH TREES 43

BST and Node implementation

public class BST<Key extends Comparable<Key>, Value> {
private Node root; // root of BST

private class Node {

private Key key; // sorted by key

private Value val; // associated value

private Node left, right; // roots of left and right subtrees
private int size; // #nodes 1n subtree rooted at this

public Node(Key key, Value val, int size) {
this.key = key;
this.val = val;
this.size = size;

parent of A and R

eft I . (35) &
BINARY SEARCH TREES ieft :'mk__ 4
of E T e
9 T value
associated
Search for a key QO asociate
keys smm't’;;r thanE keys I:a;gg>r than £

» If less than key in node go to left subtree.
» If greater than key in node go to right subtree.
» If given key and key at examined node are equal, search hit.

» Return value corresponding to given key, or null if no such key.

» In other implementations, you return the last node you
reached.

» Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES 45

Search example

successful search for R unsuccessful search for T

R is less than S

so look to the left T is greater than S

black nodes could so look to the right

match the search key

® A - R
gray nodes cannot ‘ \
match the search key : .

R is greater than E Y T is less than X
so look to the right so look to the left
‘ link is null

so T is not in tree
(search miss)

®\ found R
(search hit)
so return value

Successful (left) and unsuccessful (right) search in a BST

BINARY SEARCH TREES

Search - iterative implementation

» public Value get(Key key) {
Node x = root;
while (x !'= null) {
int cmp = key.compareTo(x.key);
1f (cmp < 0)
X = X.left;
else 1f (cmp > 0)
X = X.right;
else if (cmp == 0)
return x.val;

¥

return null;

46

BINARY SEARCH TREES

Search - recursive implementation

" public Value get(Key key) {
return get(root, key);

¥

" private Value get(Node x, Key key) {
1f (X == null)
return null;
int cmp = key.compareTo(x.key);
if (cmp < @)
return get(x.left, key);
else 1f (cmp > @)
return get(x.right, key);
else
return x.val;

47

BINARY SEARCH TREES
Practice Time

» Search for the keys 4 and 9 in the following BST:

48

BINARY SEARCH TREES

Insert

4

4

If less than key in node go left.

parent OfA andR

key
left link \ S
ofe —~—~—_ (E)
Q J T~ value
(C) (H) associated
with R
g X
keys smaller than € keys larger than E

If greater than key in node go right.

If null, insert.

If already exists, update value.

Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

50

Insert example

inserting L

search for L ends .~ /P\

at this null link
S
B— -
gl X,
-~ ~——
A _JR
/ \C T _— \
I\ TN
\
1 / P
create new node — 9[_2 <
10—
S,
8 N
E X
A < WX
A ;
/] \C‘ 4_}} / $
/ \ /' "\“’.3
reset links and / \j
increment counts = <

on the way up

Insertion into a BST

BINARY SEARCH TREES

Insert

» public void put(Key key, Value val) {
root = put(root, key, val);
hy
private Node put(Node x, Key key, Value val) {
1f (X == null)
return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
if Ccmp < 0)
x.left = put(x.left, key, val);
else 1f (cmp > 0)
x.right = put(x.right, key, val);
else
x.val = val;
x.s1ze = 1 + size(x.left) + size(x.right);
return Xx;

51

BINARY SEARCH TREES
Practice Time

» Add the key-value pairs (4,3) and (9,2) in the following
BST:

52

A 1 go 1‘1 thm S ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREE DEMO

Algorithms

ROBERT SEDGEWICK | KEvIN WAYNE

http://algs4.cs.princeton.edu

BINARY SEARCH TREES 94

Tree shape

» The same set of keys can result to different BSTs based on
their order of insertion.

» Number of compares for search/insert is equal to depth of
node +1.

best case 0 typical case
© (S)
(A) (E) R)(X)

worst case

BINARY SEARCH TREES 55
BSTs mathematical analysis
» If n distinct keys are inserted into a BST in random order, the

expected number of compares of search/insert is O(log n).

» If n distinct keys are inserted into a BST in random order, the
expected height of tree is O(logn). [Reed, 2003].

» Worst case height is n but highly unlikely.
» Keys would have to come (reversely) sorted!

» All ordered operations in a dictionary implemented with a BST
depend on the height of the BST.

BINARY SEARCH TREES

Hibbard deletion: Delete node which is a leaf

» Simply delete node.

» Example: delete 52 locates a node which is a leaf and removes it.

56

BINARY SEARCH TREES

Hibbard deletion: Delete node with one child

» Delete node and replace it with its child.

» Example: delete 70 locates a node which has one child and replaces it with the child.

57

BINARY SEARCH TREES

Hibbard deletion: Delete node with two children

» Delete node and replace it with successor (node with smallest of the larger keys).

Move successor’s child (if any) where successor was.

» Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst

58

BINARY SEARCH TREES

public void delete(Key key) {
root = delete(root, key);

}

private Node delete(Node x, Key key) {
1f (X == null) return null;

int cmp = key.compareTo(x.key);
if (cmp < 0)
x.left = delete(x.left, key);
else if (cmp > @)
x.right = delete(x.right, key);
else {
1f (x.right == null)
return x.left;
1f (x.left == null)
return x.right;
Node t = x; //replace with successor
x = min(t.right);
x.right = deleteMin(t.right);
x.left = t.left;
¥
x.slze = size(x.left) + size(x.right) + 1;
return Xx;

BINARY SEARCH TREES
Practice Time

» Delete the node 21 following Hibbard'’s deletion

60

BINARY SEARCH TREES
Answer

» Delete the node 21 following Hibbard'’s deletion

61

BINARY SEARCH TREES 62

Hibbard’'s deletion

» Unsatisfactory solution. If we were to perform many insertions and deletions
the BST ends up being not symmetric and skewed to the left.

» Extremely complicated analysis, but average cost of deletion ends up
being \/ﬁ Let’s simplify things by saying it stays O(log n).

» No one has proven that alternating between the predecessor and

successor will fix this.

» Hibbard devised the algorithm in 1962. Still no algorithm for efficient
deletion in Binary Search Trees!

» Overall, BSTs can have O(n) worst-case for search, insert, and delete. We
want to do better (see future lectures).

TODAY'S LECTURE IN A NUTSHELL

63

Lecture 23: Binary Search Trees

» Dictionaries

» Binary Search Trees

ASSIGNED READINGS AND PRACTICE PROBLEMS

64

Readings:

» Textbook: Chapters 3.1 (Pages 362-386) and 3.2 (Pages 396-414)
» Website:

» https://algs4.cs.princeton.edu/31elementary/

» https://algs4.cs.princeton.edu/32bst/

» Visualization:

» https://visualgo.net/en/bst

Practice Problems:

» 3.1.1-3.1.6,3.2.1-3.2.13

