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BINARY HEAP RECAP

Things to remember about runtime complexity of heaps
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▸ Insertion is . Why? 

▸ Delete max is . Why? 

▸ Space efficiency is . Why? 

▸ Array with complete tree

O(log n)

O(log n)

O(n)



TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Priority Queues, Heapsort, BST

▸ Binary Heaps 

▸ Priority Queue 

▸ Heapsort
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PRIORITY QUEUE

Priority Queue ADT

▸ Service best element first 

▸ Compared to FIFO or LIFO 

▸ Two operations: 

▸ Delete (return) the maximum 

▸ Insert  

▸ Applications: load balancing and interruption handling in OS, Huffman codes for 
compression, A* search for AI, Dijkstra’s and Prim's algorithm for graph search, etc. 

▸ How can we implement a priority queue efficiently? 

▸ Unordered array, Ordered array, Binary Heap
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PRIORITY QUEUE IMPLEMENTATION

Option 1: Unordered array

▸ The lazy approach where we defer doing work (deleting 
the maximum) until necessary. 

▸ Insert is  (will be implemented as push in stacks). 

▸ Delete maximum is  (have to traverse the entire array 
to find the maximum element).

O(1)

O(n)
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PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
    private Key[] pq;      // elements
    private int n;         // number of elements

    // set inititial size of heap to hold size elements
    public UnorderedArrayMaxPQ(int capacity) {
        pq = (Key[]) new Comparable[capacity];
        n = 0;
    }

    public boolean isEmpty()   { return n == 0; }
    public int size()          { return n;      }
    public void insert(Key x)  { pq[n++] = x;   }   // Insert into index n

    public Key delMax() {
        int max = 0;
        for (int i = 1; i < n; i++)
            if (less(max, i)) max = I;    // Find max element
        exch(max, n-1);                   // Exchange max with last element

        return pq[—n];                    // Return last element
    }
    private boolean less(int i, int j) {
        return pq[i].compareTo(pq[j]) < 0;
    }

    private void exch(int i, int j) {
        Key swap = pq[i];
        pq[i] = pq[j];
        pq[j] = swap;
    }
}
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PRIORITY QUEUE 8

Practice Time

1. Insert P 

2. Insert Q 

3. Insert E 

4. Delete max 

5. Insert X 

6. Insert A 

7. Insert M 

8. Delete max 

9. Insert P 

10. Insert L 

11. Insert E 

12. Delete max

▸ Given an empty array of capacity 10, perform the 
following operations in a priority queue based on an 
unordered array (lazy approach):



PRIORITY QUEUE 9

Answer



PRIORITY QUEUE

Option 2: Ordered array

▸ The eager approach where we do the work (keeping the 
list sorted) up front to make later operations efficient. 

▸ Insert is  (we have to find the index to insert and shift 
elements to perform insertion). 

▸ Delete maximum is  (just take the last element which 
will the maximum).

O(n)

O(1)
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PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
    private Key[] pq;          // elements
    private int n;             // number of elements

    // set inititial size of heap to hold size elements
    public OrderedArrayMaxPQ(int capacity) {
        pq = (Key[]) (new Comparable[capacity]);
        n = 0;
    }

    public boolean isEmpty() { return n == 0;  }
    public int size()        { return n;       } 
    public Key delMax()      { return pq[--n]; }

    public void insert(Key key) {
        int i = n-1;
        while (i >= 0 && less(key, pq[i])) {
            pq[i+1] = pq[i];                   // Empty element is at index i
            i--;
        }
        pq[i+1] = key;                         // I+1 to get to the empty element
        n++;
    }

   private boolean less(Key v, Key w) {
        return v.compareTo(w) < 0;
    }
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PRIORITY QUEUE 12

Practice Time

1. Insert P 

2. Insert Q 

3. Insert E 

4. Delete max 

5. Insert X 

6. Insert A 

7. Insert M 

8. Delete max 

9. Insert P 

10. Insert L 

11. Insert E 

12. Delete max

▸ Given an empty array of capacity 10, perform the 
following operations in a priority queue based on an 
ordered array (eager approach):



PRIORITY QUEUE 13

Answer



PRIORITY QUEUE

Option 3: Binary heap

▸ Will allow us to both insert and delete max in 
running time.  

▸ There is no way to implement a priority queue in such a 
way that insert and delete max can be achieved in  
running time. 

▸ Priority queues are synonyms to binary heaps.

O(log n)

O(1)
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PRIORITY QUEUE 15

Practice Time

1. Insert P 

2. Insert Q 

3. Insert E 

4. Delete max 

5. Insert X 

6. Insert A 

7. Insert M 

8. Delete max 

9. Insert P 

10. Insert L 

11. Insert E 

12. Delete max

▸ Given an empty binary heap that represents a priority 
queue, perform the following operations:



PRIORITY QUEUE 16

Answer



TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Priority Queues and Heapsort

▸ Priority Queue 

▸ Heapsort
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HEAPSORT

Basic plan for heap sort
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▸ Use a priority queue to develop a sorting method that 
works in two steps: 

▸ 1) Heap construction: build a binary heap with all  keys 
that need to be sorted. 

▸ 2) Sortdown: repeatedly remove and return the maximum 
key. 

n



HEAPSORT

 Heap constructionO(n)
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▸ Construct complete binary tree with elements 

▸ Ignore all leaves (indices n/2+1,…,n). 

▸ for(int k = n/2; k >= 1; k--)  
      sink(a, k, n);

▸ Key insight: After sink(a,k,n) completes, the subtree rooted at k 
is a heap.

a)

b)

c)

d)

e)

f)



HEAPSORT 20

Practice Time

▸ Run the first step of heapsort, heap construction, on the 
array [2,9,7,6,5,8].



HEAPSORT 21

Answer: Heap construction



HEAPSORT

Sortdown
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‣ Remove the maximum, one at a time, but leave in array 
instead of nulling out. 

▸ while(n>1){  
  exch(a, 1, n--);  
  sink(a, 1, n);  
}

▸ Key insight: After each iteration the array consists of a 
heap-ordered subarray followed by a sub-array in final 
order.



HEAPSORT

Sortdown
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▸ while(n>1){  
  exch(a, 1, n--);  
  sink(a, 1, n);  
}



HEAPSORT 24



HEAPSORT 25

Practice Time

▸ Given the heap you constructed before, run the second 
step of heapsort, sortdown, to sort the array 
[2,9,7,6,5,8].



HEAPSORT 26

Answer: Sortdown



HEAPSORT

Heapsort analysis
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▸ Heap construction makes  exchanges and  compares. 

▸ Sortdown and therefore the entire heap sort  exchanges and compares. 

▸ In-place sorting algorithm with  worst-case! 

▸ Remember: 

▸ mergesort: not in place, requires linear extra space. 

▸ quicksort: quadratic time in worst case. 

▸ Heapsort is optimal both for time and space in terms of Big-O, but: 

▸ Inner loop longer than quick sort. 

▸ Poor use of cache. Why? 

▸ Not stable.

O(n) O(n)

O(n log n)

O(n log n)



HEAPSORT

Sorting: Everything you need to remember about it!

Which Sort In 
place

Stable Best Average Worst Remarks

Selection X      exchanges

Insertion X X Use for small arrays 
or partially ordered

Merge X Guaranteed 
performance; stable

Quick X             probabilistic 
guarantee; fastest!

Heap X Guaranteed 
performance; in place

O(n2) O(n2) O(n2) n

O(n2) O(n2)O(n)

O(n log n) O(n log n) O(n log n)
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O(n log n) O(n log n) O(n2)
n log n

O(n log n) O(n log n) O(n log n)



TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Priority Queues and Heapsort

▸ Priority Queue 

▸ Heapsort

29



ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: 

▸ Chapter 2.4 (Pages 308-327), 2.5 (336-344) 

▸ Website: 

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/ 

▸ Visualization: 

▸ Create (nlogn) and heapsort: https://visualgo.net/en/heap

30

Practice Problems:

▸ 2.4.1-2.4.11. Also try some creative problems.



ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: 

▸ Chapter 2.4 (Pages 308-327) 

▸ Website: 

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/ 

▸ Visualization: 

▸ Insert and ExtractMax: https://visualgo.net/en/heap

31

Practice Problems:

▸ Practice with traversals of trees and insertions and deletions in binary heaps



TEXT 32



TODAY’S LECTURE IN A NUTSHELL

Lecture 18: Search

▸ Dictionaries (Symbol Tables) 

▸ Binary Search Trees

33

Some slides adopted from Algorithms 4th Edition or COS226



DICTIONARIES

Dictionaries

▸ Also known as: symbol tables, maps, indices, associative 
arrays. 

▸ Key-value pair abstractions that support two operations: 

▸ Insert a key-value pair. 

▸ Given a key, search for the corresponding value. 

▸ Supported either with built-in or external libraries by the 
majority of programming languages.

34



DICTIONARIES

Basic symbol table API 

▸ public class ST <Key extends Comparable<Key>, Value>

▸ Key needs to implement the Comparable interface, but it is a generic (use extends)

▸ ST(): create an empty symbol table. By convention, values are not null. 

▸ void put(Key key, Value val): insert key-value pair. 

▸ Overwrites old value with new value if key already exists. 

▸ Value get(Key key): return value associated with key. 

▸ Returns null if key not present. Can’t distinguish between null values and non-existent pairs 

▸ boolean contains(Key key): is there a value associated with key? 

▸ Iterable keys(): all the keys in the symbol table. 

▸ void delete(Key key): delete key and associated value. 

▸ boolean isEmpty(): is the symbol table empty? 

▸ int size(): number of key-value pairs.

35Application Key Value

Phonebook Name Phone 
numberererWeb search Keyword List of page 

namesBook index Term List of page 
numbersCompiler Variable Type & Value



DICTIONARIES

Ordered symbol tables

36



DICTIONARIES

Ordered symbol table API 

▸ Key min(): smallest key. 

▸ Key max(): largest key. 

▸ Key floor(Key key): largest key less than or equal to given key. 

▸ Key ceiling(Key key): smallest key greater than or equal to given key. 

▸ int rank(Key key): number of keys less that given key. 

▸ Key select(int k): key with rank k. 

▸ Iterable keys(): all keys in symbol table in sorted order. 

▸ Iterable keys(int lo, int hi): keys in [lo, …, hi] in sorted order.
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DICTIONARIES

Printed symbol tables are all around us

▸ Dictionary: key = word, value = definition. 

▸ Encyclopedia: key = term, value = article. 

▸ Phonebook: key = name, value = phone number. 

▸ Math table: key = math functions and input,  
value = function output. 

▸ Unsupported operations: 

▸ Add a new key and associated value. 

▸ Remove a given key and associated value. 

▸ Change value associated with a given key.

38



TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Binary Search Trees

▸ Dictionaries  

▸ Unordered linked lists (Node with key and value) 

▸ Insertion and search are linear 

▸ Sorted array for keys and parallel array for values 

▸ Search is logarithmic, but insertion is linear 

▸ Binary search Trees

39



BINARY SEARCH TREES

Definitions

▸ Binary Search Tree: A binary tree in symmetric order. 

▸ Symmetric order: Each node has a key, and every node’s 
key is: 

▸ Larger than all keys in its left subtree. 

▸ Smaller than all keys in its right subtree. 

▸ Our textbook uses BSTs to implement dictionaries, 
therefore each node holds a key-value pair. Other 
implementations hold only a key.

40



BINARY SEARCH TREES

Differences between heaps and BSTs

*: when BSTs used to implement dictionaries.

41

Heap BST

Used to implement Priority queues Dictionaries

Supported operations Insert, delete max insert, search, delete, 
ordered operations

What is inserted Keys Key-value pairs

Underlying data structure (Resizing) array Linked nodes

Tree shape Complete binary tree Depends on data

Ordering of keys Heap-ordered Symmetrically-ordered

Duplicate keys allowed? Yes No*



BINARY SEARCH TREES

BST representation of dictionaries

42

▸ We will use an inner class Node that is composed by: 

▸ A Key that is comparable and a Value 

▸ A reference to the root nodes of the left (smaller keys) 
and right (larger keys) subtrees.  

▸ Potentially, the total number of nodes in the subtree that 
has root at this node. 

▸ A BST has a reference to a Node root.



BINARY SEARCH TREES

BST and Node implementation

43

public class BST<Key extends Comparable<Key>, Value> {
   private Node root;              // root of BST
 
   private class Node {
        private Key key;           // sorted by key
        private Value val;         // associated value
        private Node left, right;  // roots of left and right subtrees
        private int size;          // #nodes in subtree rooted at this

        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }



BINARY SEARCH TREES

Search for a key

44

▸ If less than key in node go to left subtree.  

▸ If greater than key in node go to right subtree. 

▸ If given key and key at examined node are equal, search hit. 

▸ Return value corresponding to given key, or null if no such key. 

▸ In other implementations, you return the last node you 
reached. 

▸ Number of compares is equal to the depth of the node + 1. 



BINARY SEARCH TREES

Search example

45



BINARY SEARCH TREES

Search - iterative implementation

46

▸ public Value get(Key key) {  
     Node x = root;  
     while (x != null) {  
           int cmp = key.compareTo(x.key);  
           if (cmp < 0)  
                   x = x.left;  
           else if (cmp > 0)  
                   x = x.right;  
           else if (cmp == 0)  
                   return x.val;  
      }  
      return null;  
}



BINARY SEARCH TREES

Search - recursive implementation
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‣ public Value get(Key key) {  
     return get(root, key);  
}

‣ private Value get(Node x, Key key) {  
     if (x == null)  
           return null;  
     int cmp = key.compareTo(x.key);  
     if (cmp < 0)  
         return get(x.left, key);  
     else if (cmp > 0)  
         return get(x.right, key);            
     else                
         return x.val;       
}



BINARY SEARCH TREES

Practice Time

▸ Search for the keys 4 and 9 in the following BST:
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BINARY SEARCH TREES

Insert

49

▸ If less than key in node go left.  

▸ If greater than key in node go right. 

▸ If null, insert. 

▸ If already exists, update value. 

▸ Number of compares is equal to the depth of the node + 1. 



BINARY SEARCH TREES

Insert example

50



BINARY SEARCH TREES

Insert

51

▸ public void put(Key key, Value val) {  
     root = put(root, key, val);  
}  
private Node put(Node x, Key key, Value val) {  
     if (x == null)  
           return new Node(key, val, 1);  
     int cmp = key.compareTo(x.key);  
     if (cmp < 0)  
         x.left = put(x.left, key, val);  
     else if (cmp > 0)  
         x.right = put(x.right, key, val);            
     else                
         x.val = val;  
     x.size = 1 + size(x.left) + size(x.right);  
     return x;    
}



BINARY SEARCH TREES

Practice Time

▸ Add the key-value pairs (4,3) and (9,2) in the following 
BST:

52
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BINARY SEARCH TREES

Tree shape

54

▸ The same set of keys can result to different BSTs based on 
their order of insertion. 

▸ Number of compares for search/insert is equal to depth of 
node +1.



BINARY SEARCH TREES

BSTs mathematical analysis

55

▸ If  distinct keys are inserted into a BST in random order, the 
expected number of compares of search/insert is . 

▸ If  distinct keys are inserted into a BST in random order, the 
expected height of tree is  . [Reed, 2003]. 

▸ Worst case height is  but highly unlikely. 

▸ Keys would have to come (reversely) sorted! 

▸ All ordered operations in a dictionary implemented with a BST 
depend on the height of the BST.

n
O(log n)

n
O(log n)

n



BINARY SEARCH TREES

Hibbard deletion: Delete node which is a leaf
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▸ Simply delete node. 

▸ Example: delete 52 locates a node which is a leaf and removes it. 



BINARY SEARCH TREES

Hibbard deletion: Delete node with one child
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▸ Delete node and replace it with its child. 

▸ Example: delete 70 locates a node which has one child and replaces it with the child. 



BINARY SEARCH TREES

Hibbard deletion: Delete node with two children
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▸ Delete node and replace it with successor (node with smallest of the larger keys). 
Move successor’s child (if any) where successor was. 

▸ Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst



BINARY SEARCH TREES 59

   public void delete(Key key) {
       root = delete(root, key);
   }

    private Node delete(Node x, Key key) {
        if (x == null) return null;

        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            x.left  = delete(x.left,  key);
        else if (cmp > 0)  
            x.right = delete(x.right, key);
        else { 
            if (x.right == null)
                return x.left;
            if (x.left  == null)
                return x.right;
            Node t = x; //replace with successor
            x = min(t.right);
            x.right = deleteMin(t.right);
            x.left = t.left;
        } 
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }



BINARY SEARCH TREES

Practice Time

▸ Delete the node 21 following Hibbard’s deletion
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BINARY SEARCH TREES

Answer

▸ Delete the node 21 following Hibbard’s deletion
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BINARY SEARCH TREES

Hibbard’s deletion

62

▸ Unsatisfactory solution. If we were to perform many insertions and deletions 
the BST ends up being not symmetric and skewed to the left. 

▸ Extremely complicated analysis, but average cost of deletion ends up 
being . Let’s simplify things by saying it stays . 

▸ No one has proven that alternating between the predecessor and 
successor will fix this. 

▸ Hibbard devised the algorithm in 1962. Still no algorithm for efficient  
deletion in Binary Search Trees! 

▸ Overall, BSTs can have  worst-case for search, insert, and delete. We 
want to do better (see future lectures).

n O(log n)

O(n)



TODAY’S LECTURE IN A NUTSHELL

Lecture 23: Binary Search Trees

▸ Dictionaries 

▸ Binary Search Trees
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapters 3.1 (Pages 362—386) and 3.2 (Pages 396–414) 

▸ Website: 

▸ https://algs4.cs.princeton.edu/31elementary/ 

▸ https://algs4.cs.princeton.edu/32bst/ 

▸ Visualization: 

▸ https://visualgo.net/en/bst

64

Practice Problems:

▸ 3.1.1-3.1.6, 3.2.1-3.2.13


