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BINARY TREE RECAP

Recap

2

▸ Binary Tree 

▸ Tree Traversal: pre-order, in-order, post-order, and level 
order:



TREE TRAVERSALS 3

▸ Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3 

▸ In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11 

▸ Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8 

▸ Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2



TODAY’S LECTURE IN A NUTSHELL

Lecture 17: Heaps, Priority Queues and Heapsort

▸ Binary Heaps 

▸ Priority Queue 

▸ Heapsort
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BINARY HEAP

Heap-ordered binary trees

▸ A binary tree is heap-ordered if the key in each node is larger than 
or equal to the keys in that node’s two children (if any). 

▸ Equivalently, the key in each node of a heap-ordered binary tree is 
smaller than or equal to the key in that node’s parent (if any). 

▸ No assumption of which child is smaller. 

▸ Moving up from any node, we get a non-decreasing sequence of 
keys. 

▸ Moving down from any node we get a non-increasing sequence of 
keys.
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BINARY HEAP

Heap-ordered binary trees

▸ The largest key in a heap-ordered binary tree is found at 
the root!
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BINARY HEAP

Binary heap representation

▸ We could use a linked representation but we would need 
three links for every node (one for parent, one for left 
subtree, one for right subtree). 

▸ If we use complete binary trees, we can use an array 
instead.  

▸ Compact arrays vs explicit links means memory savings 
and faster execution! 

▸ Array access is much faster than chasing down pointers
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BINARY HEAP

Binary heaps

▸ Binary heap: the array representation of a complete heap-
ordered binary tree. 

▸ Parent’s key is not smaller than children’s keys. 

▸ Children’s keys are not bigger than parent’s key. 

▸ Max-heap but there are min-heaps, too.
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BINARY HEAP

Array representation of heaps

▸ Nothing is placed at index 0. 

▸ Root is placed at index 1. 

▸ Easy indexing between parent/child 

▸ Rest of nodes are placed  
in level order. 

▸ No unnecessary indices and no wasted 
space because it’s complete. 

▸ What's the relationship between node 
index and 2 children?
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BINARY HEAP

Reuniting immediate family members.

▸ For every node at index , its parent is at index . 

▸ Its two children are at indices  and . 

▸ We can travel up and down the heap by using this simple 
arithmetic on array indices. 

▸ Accesses using indices are much faster than using 
pointers/references 

k ⌊k/2⌋

2k 2k + 1
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BINARY HEAP - ADD AND REMOVE ELEMENTS?

Swim/promote/percolate up/bottom up reheapify

▸ Scenario: a key becomes larger than its parent therefore it 
violates the heap-ordered property. 

▸ To eliminate the violation: 

▸ Exchange key in child with key in parent. 

▸ Repeat until heap order restored.
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BINARY HEAP

Swim/promote/percolate up

private void swim(int k) {
   while (k > 1 && less(k/2, k)) {
      exch(k, k/2);
      k = k/2;
   }
}
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BINARY HEAP

Binary heap: insertion
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▸ Insert: Add node at end in bottom 
level, then swim it up. 

▸ Cost: At most  compares. 
 
public void insert(Key x) {  
   pq[++n] = x;  
   swim(n);  
}

log n + 1



BINARY HEAP

Practice Time
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▸ Insert 47 in this binary heap.



BINARY HEAP

Answer
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BINARY HEAP

Sink/demote/top down heapify

▸ Scenario: a key becomes smaller than one (or both) of its 
children’s keys. 

▸ To eliminate the violation: 

▸ Exchange key in parent with key in larger child. 

▸ Repeat until heap order is restored.
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BINARY HEAP

Sink/demote/top down heapify

private void sink(int k) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && less(j, j+1))
            j++; 
        if (!less(k, j))
            break; 
        exch(k, j); 
        k = j; 
    } 
}
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BINARY HEAP

Practice Time
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▸ Sink 7 to its appropriate place in this binary heap.



BINARY HEAP

Answer
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BINARY HEAP

Binary heap: return (and delete) the maximum
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▸ Delete max: Exchange root with node at end. Return it and delete 
it. Sink the new root down. 

▸ Cost: At most  compares. Why? 
 
public Key delMax() {  
    Key max = pq[1];  
    exch(1, n--);  
    sink(1);  
    pq[n+1] = null;  
    return max;  
} 

2 log n



BINARY HEAP

Binary heap: return (and delete) the maximum

21

▸ Delete max: Exchange root with node at end. Return it and delete 
it. Sink the new root down. 

▸ Cost: At most  compares. Why? 
 
public Key delMax() {  
    Key max = pq[1];  
    exch(1, n--);  
    sink(1);  
    pq[n+1] = null;  
    return max;  
} 

2 log n

private void sink(int k) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && less(j, j+1))
            j++; 
        if (!less(k, j))
            break; 
        exch(k, j); 
        k = j; 
    } 
}



BINARY HEAP

Binary heap: delete and return maximum
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BINARY HEAP

Practice Time
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▸ Delete max (and return it!)



BINARY HEAP

Answer
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BINARY HEAP

Things to remember about runtime complexity of heaps
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▸ Insertion is . 

▸ Delete max is . 

▸ Space efficiency is .

O(log n)

O(log n)

O(n)



BINARY HEAP

Things to remember about runtime complexity of heaps
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▸ Insertion is . 

▸ Delete max is . 

▸ Space efficiency is . 

▸ Array with complete tree

O(log n)

O(log n)

O(n)
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TODAY’S LECTURE IN A NUTSHELL

Lecture 17: Heaps, Priority Queues and Heapsort

▸ Binary Heaps 

▸ Priority Queue 

▸ Heapsort
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PRIORITY QUEUE

Priority Queue ADT

▸ Service best element first 

▸ Compared to FIFO or LIFO 

▸ Two operations: 

▸ Delete (return) the maximum 

▸ Insert  

▸ Applications: load balancing and interruption handling in OS, Huffman codes for 
compression, A* search for AI, Dijkstra’s and Prim's algorithm for graph search, etc. 

▸ How can we implement a priority queue efficiently? 

▸ Unordered array, Ordered array, Binary Heap
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PRIORITY QUEUE IMPLEMENTATION

Option 1: Unordered array

▸ The lazy approach where we defer doing work (deleting 
the maximum) until necessary. 

▸ Insert is  (will be implemented as push in stacks). 

▸ Delete maximum is  (have to traverse the entire array 
to find the maximum element).

O(1)

O(n)
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PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
    private Key[] pq;      // elements
    private int n;         // number of elements

    // set inititial size of heap to hold size elements
    public UnorderedArrayMaxPQ(int capacity) {
        pq = (Key[]) new Comparable[capacity];
        n = 0;
    }

    public boolean isEmpty()   { return n == 0; }
    public int size()          { return n;      }
    public void insert(Key x)  { pq[n++] = x;   }   // Insert into index n

    public Key delMax() {
        int max = 0;
        for (int i = 1; i < n; i++)
            if (less(max, i)) max = I;    // Find max element
        exch(max, n-1);                   // Exchange max with last element

        return pq[—n];                    // Return last element
    }
    private boolean less(int i, int j) {
        return pq[i].compareTo(pq[j]) < 0;
    }

    private void exch(int i, int j) {
        Key swap = pq[i];
        pq[i] = pq[j];
        pq[j] = swap;
    }
}
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PRIORITY QUEUE 32

Practice Time

1. Insert P 

2. Insert Q 

3. Insert E 

4. Delete max 

5. Insert X 

6. Insert A 

7. Insert M 

8. Delete max 

9. Insert P 

10. Insert L 

11. Insert E 

12. Delete max

▸ Given an empty array of capacity 10, perform the 
following operations in a priority queue based on an 
unordered array (lazy approach):



PRIORITY QUEUE 33

Answer



PRIORITY QUEUE

Option 2: Ordered array

▸ The eager approach where we do the work (keeping the 
list sorted) up front to make later operations efficient. 

▸ Insert is  (we have to find the index to insert and shift 
elements to perform insertion). 

▸ Delete maximum is  (just take the last element which 
will the maximum).

O(n)

O(1)
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PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
    private Key[] pq;          // elements
    private int n;             // number of elements

    // set inititial size of heap to hold size elements
    public OrderedArrayMaxPQ(int capacity) {
        pq = (Key[]) (new Comparable[capacity]);
        n = 0;
    }

    public boolean isEmpty() { return n == 0;  }
    public int size()        { return n;       } 
    public Key delMax()      { return pq[--n]; }

    public void insert(Key key) {
        int i = n-1;
        while (i >= 0 && less(key, pq[i])) {
            pq[i+1] = pq[i];                   // Empty element is at index i
            i--;
        }
        pq[i+1] = key;                         // I+1 to get to the empty element
        n++;
    }

   private boolean less(Key v, Key w) {
        return v.compareTo(w) < 0;
    }
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PRIORITY QUEUE 36

Practice Time

1. Insert P 

2. Insert Q 

3. Insert E 

4. Delete max 

5. Insert X 

6. Insert A 

7. Insert M 

8. Delete max 

9. Insert P 

10. Insert L 

11. Insert E 

12. Delete max

▸ Given an empty array of capacity 10, perform the 
following operations in a priority queue based on an 
ordered array (eager approach):



PRIORITY QUEUE 37

Answer



PRIORITY QUEUE

Option 3: Binary heap

▸ Will allow us to both insert and delete max in 
running time.  

▸ There is no way to implement a priority queue in such a 
way that insert and delete max can be achieved in  
running time. 

▸ Priority queues are synonyms to binary heaps.

O(log n)

O(1)
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TEXT

Stopped here
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PRIORITY QUEUE 40

Practice Time

1. Insert P 

2. Insert Q 

3. Insert E 

4. Delete max 

5. Insert X 

6. Insert A 

7. Insert M 

8. Delete max 

9. Insert P 

10. Insert L 

11. Insert E 

12. Delete max

▸ Given an empty binary heap that represents a priority 
queue, perform the following operations:



PRIORITY QUEUE 41

Answer



TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Priority Queues and Heapsort

▸ Priority Queue 

▸ Heapsort
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HEAPSORT

Basic plan for heap sort
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▸ Use a priority queue to develop a sorting method that 
works in two steps: 

▸ 1) Heap construction: build a binary heap with all  keys 
that need to be sorted. 

▸ 2) Sortdown: repeatedly remove and return the maximum 
key. 

n



HEAPSORT

 Heap constructionO(n)
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▸ Construct complete binary tree with elements 

▸ Ignore all leaves (indices n/2+1,…,n). 

▸ for(int k = n/2; k >= 1; k--)  
      sink(a, k, n);

▸ Key insight: After sink(a,k,n) completes, the subtree rooted at k 
is a heap.

a)

b)

c)

d)

e)

f)



HEAPSORT 45

Practice Time

▸ Run the first step of heapsort, heap construction, on the 
array [2,9,7,6,5,8].



HEAPSORT 46

Answer: Heap construction



HEAPSORT

Sortdown
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‣ Remove the maximum, one at a time, but leave in array 
instead of nulling out. 

▸ while(n>1){  
  exch(a, 1, n--);  
  sink(a, 1, n);  
}

▸ Key insight: After each iteration the array consists of a 
heap-ordered subarray followed by a sub-array in final 
order.



HEAPSORT

Sortdown

48

▸ while(n>1){  
  exch(a, 1, n--);  
  sink(a, 1, n);  
}



HEAPSORT 49



HEAPSORT 50

Practice Time

▸ Given the heap you constructed before, run the second 
step of heapsort, sortdown, to sort the array 
[2,9,7,6,5,8].



HEAPSORT 51

Answer: Sortdown



HEAPSORT

Heapsort analysis
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▸ Heap construction makes  exchanges and  compares. 

▸ Sortdown and therefore the entire heap sort  exchanges and compares. 

▸ In-place sorting algorithm with  worst-case! 

▸ Remember: 

▸ mergesort: not in place, requires linear extra space. 

▸ quicksort: quadratic time in worst case. 

▸ Heapsort is optimal both for time and space in terms of Big-O, but: 

▸ Inner loop longer than quick sort. 

▸ Poor use of cache. Why? 

▸ Not stable.

O(n) O(n)

O(n log n)

O(n log n)



HEAPSORT

Sorting: Everything you need to remember about it!

Which Sort In 
place

Stable Best Average Worst Remarks

Selection X      exchanges

Insertion X X Use for small arrays 
or partially ordered

Merge X Guaranteed 
performance; stable

Quick X             probabilistic 
guarantee; fastest!

Heap X Guaranteed 
performance; in place

O(n2) O(n2) O(n2) n

O(n2) O(n2)O(n)

O(n log n) O(n log n) O(n log n)
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O(n log n) O(n log n) O(n2)
n log n

O(n log n) O(n log n) O(n log n)



TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Priority Queues and Heapsort

▸ Priority Queue 

▸ Heapsort
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: 

▸ Chapter 2.4 (Pages 308-327), 2.5 (336-344) 

▸ Website: 

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/ 

▸ Visualization: 

▸ Create (nlogn) and heapsort: https://visualgo.net/en/heap
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Practice Problems:

▸ 2.4.1-2.4.11. Also try some creative problems.



ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: 

▸ Chapter 2.4 (Pages 308-327) 

▸ Website: 

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/ 

▸ Visualization: 

▸ Insert and ExtractMax: https://visualgo.net/en/heap

56

Practice Problems:

▸ Practice with traversals of trees and insertions and deletions in binary heaps


