
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

17: Heaps, Priority Queue, Heap Sort

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Tom Yeh
he/him/his

BINARY TREE RECAP

Recap

2

▸ Binary Tree

▸ Tree Traversal: pre-order, in-order, post-order, and level
order:

TREE TRAVERSALS 3

▸ Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3

▸ In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11

▸ Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8

▸ Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2

TODAY’S LECTURE IN A NUTSHELL

Lecture 17: Heaps, Priority Queues and Heapsort

▸ Binary Heaps

▸ Priority Queue

▸ Heapsort

4

BINARY HEAP

Heap-ordered binary trees

▸ A binary tree is heap-ordered if the key in each node is larger than
or equal to the keys in that node’s two children (if any).

▸ Equivalently, the key in each node of a heap-ordered binary tree is
smaller than or equal to the key in that node’s parent (if any).

▸ No assumption of which child is smaller.

▸ Moving up from any node, we get a non-decreasing sequence of
keys.

▸ Moving down from any node we get a non-increasing sequence of
keys.

5

BINARY HEAP

Heap-ordered binary trees

▸ The largest key in a heap-ordered binary tree is found at
the root!

6

BINARY HEAP

Binary heap representation

▸ We could use a linked representation but we would need
three links for every node (one for parent, one for left
subtree, one for right subtree).

▸ If we use complete binary trees, we can use an array
instead.

▸ Compact arrays vs explicit links means memory savings
and faster execution!

▸ Array access is much faster than chasing down pointers

7

BINARY HEAP

Binary heaps

▸ Binary heap: the array representation of a complete heap-
ordered binary tree.

▸ Parent’s key is not smaller than children’s keys.

▸ Children’s keys are not bigger than parent’s key.

▸ Max-heap but there are min-heaps, too.

8

BINARY HEAP

Array representation of heaps

▸ Nothing is placed at index 0.

▸ Root is placed at index 1.

▸ Easy indexing between parent/child

▸ Rest of nodes are placed
in level order.

▸ No unnecessary indices and no wasted
space because it’s complete.

▸ What's the relationship between node
index and 2 children?

9

BINARY HEAP

Reuniting immediate family members.

▸ For every node at index , its parent is at index .

▸ Its two children are at indices and .

▸ We can travel up and down the heap by using this simple
arithmetic on array indices.

▸ Accesses using indices are much faster than using
pointers/references

k ⌊k/2⌋

2k 2k + 1

10

BINARY HEAP - ADD AND REMOVE ELEMENTS?

Swim/promote/percolate up/bottom up reheapify

▸ Scenario: a key becomes larger than its parent therefore it
violates the heap-ordered property.

▸ To eliminate the violation:

▸ Exchange key in child with key in parent.

▸ Repeat until heap order restored.

11

BINARY HEAP

Swim/promote/percolate up

private void swim(int k) {
 while (k > 1 && less(k/2, k)) {
 exch(k, k/2);
 k = k/2;
 }
}

12

BINARY HEAP

Binary heap: insertion

13

▸ Insert: Add node at end in bottom
level, then swim it up.

▸ Cost: At most compares.

public void insert(Key x) {  
 pq[++n] = x;  
 swim(n);  
}

log n + 1

BINARY HEAP

Practice Time

14

▸ Insert 47 in this binary heap.

BINARY HEAP

Answer

15

BINARY HEAP

Sink/demote/top down heapify

▸ Scenario: a key becomes smaller than one (or both) of its
children’s keys.

▸ To eliminate the violation:

▸ Exchange key in parent with key in larger child.

▸ Repeat until heap order is restored.

16

BINARY HEAP

Sink/demote/top down heapify

private void sink(int k) {
 while (2*k <= n) {
 int j = 2*k;
 if (j < n && less(j, j+1))
 j++;
 if (!less(k, j))
 break;
 exch(k, j);
 k = j;
 }
}

17

BINARY HEAP

Practice Time

18

▸ Sink 7 to its appropriate place in this binary heap.

BINARY HEAP

Answer

19

BINARY HEAP

Binary heap: return (and delete) the maximum

20

▸ Delete max: Exchange root with node at end. Return it and delete
it. Sink the new root down.

▸ Cost: At most compares. Why?

public Key delMax() {  
 Key max = pq[1];  
 exch(1, n--);  
 sink(1);  
 pq[n+1] = null;  
 return max;  
}

2 log n

BINARY HEAP

Binary heap: return (and delete) the maximum

21

▸ Delete max: Exchange root with node at end. Return it and delete
it. Sink the new root down.

▸ Cost: At most compares. Why?

public Key delMax() {  
 Key max = pq[1];  
 exch(1, n--);  
 sink(1);  
 pq[n+1] = null;  
 return max;  
}

2 log n

private void sink(int k) {
 while (2*k <= n) {
 int j = 2*k;
 if (j < n && less(j, j+1))
 j++;
 if (!less(k, j))
 break;
 exch(k, j);
 k = j;
 }
}

BINARY HEAP

Binary heap: delete and return maximum

22

BINARY HEAP

Practice Time

23

▸ Delete max (and return it!)

BINARY HEAP

Answer

24

BINARY HEAP

Things to remember about runtime complexity of heaps

25

▸ Insertion is .

▸ Delete max is .

▸ Space efficiency is .

O(log n)

O(log n)

O(n)

BINARY HEAP

Things to remember about runtime complexity of heaps

26

▸ Insertion is .

▸ Delete max is .

▸ Space efficiency is .

▸ Array with complete tree

O(log n)

O(log n)

O(n)

27

TODAY’S LECTURE IN A NUTSHELL

Lecture 17: Heaps, Priority Queues and Heapsort

▸ Binary Heaps

▸ Priority Queue

▸ Heapsort

28

PRIORITY QUEUE

Priority Queue ADT

▸ Service best element first

▸ Compared to FIFO or LIFO

▸ Two operations:

▸ Delete (return) the maximum

▸ Insert

▸ Applications: load balancing and interruption handling in OS, Huffman codes for
compression, A* search for AI, Dijkstra’s and Prim's algorithm for graph search, etc.

▸ How can we implement a priority queue efficiently?

▸ Unordered array, Ordered array, Binary Heap

29

PRIORITY QUEUE IMPLEMENTATION

Option 1: Unordered array

▸ The lazy approach where we defer doing work (deleting
the maximum) until necessary.

▸ Insert is (will be implemented as push in stacks).

▸ Delete maximum is (have to traverse the entire array
to find the maximum element).

O(1)

O(n)

30

PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public UnorderedArrayMaxPQ(int capacity) {
 pq = (Key[]) new Comparable[capacity];
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public void insert(Key x) { pq[n++] = x; } // Insert into index n

 public Key delMax() {
 int max = 0;
 for (int i = 1; i < n; i++)
 if (less(max, i)) max = I; // Find max element
 exch(max, n-1); // Exchange max with last element

 return pq[—n]; // Return last element
 }
 private boolean less(int i, int j) {
 return pq[i].compareTo(pq[j]) < 0;
 }

 private void exch(int i, int j) {
 Key swap = pq[i];
 pq[i] = pq[j];
 pq[j] = swap;
 }
}

31

PRIORITY QUEUE 32

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
unordered array (lazy approach):

PRIORITY QUEUE 33

Answer

PRIORITY QUEUE

Option 2: Ordered array

▸ The eager approach where we do the work (keeping the
list sorted) up front to make later operations efficient.

▸ Insert is (we have to find the index to insert and shift
elements to perform insertion).

▸ Delete maximum is (just take the last element which
will the maximum).

O(n)

O(1)

34

PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public OrderedArrayMaxPQ(int capacity) {
 pq = (Key[]) (new Comparable[capacity]);
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public Key delMax() { return pq[--n]; }

 public void insert(Key key) {
 int i = n-1;
 while (i >= 0 && less(key, pq[i])) {
 pq[i+1] = pq[i]; // Empty element is at index i
 i--;
 }
 pq[i+1] = key; // I+1 to get to the empty element
 n++;
 }

 private boolean less(Key v, Key w) {
 return v.compareTo(w) < 0;
 }

35

PRIORITY QUEUE 36

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
ordered array (eager approach):

PRIORITY QUEUE 37

Answer

PRIORITY QUEUE

Option 3: Binary heap

▸ Will allow us to both insert and delete max in
running time.

▸ There is no way to implement a priority queue in such a
way that insert and delete max can be achieved in
running time.

▸ Priority queues are synonyms to binary heaps.

O(log n)

O(1)

38

TEXT

Stopped here

39

PRIORITY QUEUE 40

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty binary heap that represents a priority
queue, perform the following operations:

PRIORITY QUEUE 41

Answer

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Priority Queues and Heapsort

▸ Priority Queue

▸ Heapsort

42

HEAPSORT

Basic plan for heap sort

43

▸ Use a priority queue to develop a sorting method that
works in two steps:

▸ 1) Heap construction: build a binary heap with all keys
that need to be sorted.

▸ 2) Sortdown: repeatedly remove and return the maximum
key.

n

HEAPSORT

 Heap constructionO(n)

44

▸ Construct complete binary tree with elements

▸ Ignore all leaves (indices n/2+1,…,n).

▸ for(int k = n/2; k >= 1; k--)  
 sink(a, k, n);

▸ Key insight: After sink(a,k,n) completes, the subtree rooted at k
is a heap.

a)

b)

c)

d)

e)

f)

HEAPSORT 45

Practice Time

▸ Run the first step of heapsort, heap construction, on the
array [2,9,7,6,5,8].

HEAPSORT 46

Answer: Heap construction

HEAPSORT

Sortdown

47

‣ Remove the maximum, one at a time, but leave in array
instead of nulling out.

▸ while(n>1){  
 exch(a, 1, n--);  
 sink(a, 1, n);  
}

▸ Key insight: After each iteration the array consists of a
heap-ordered subarray followed by a sub-array in final
order.

HEAPSORT

Sortdown

48

▸ while(n>1){  
 exch(a, 1, n--);  
 sink(a, 1, n);  
}

HEAPSORT 49

HEAPSORT 50

Practice Time

▸ Given the heap you constructed before, run the second
step of heapsort, sortdown, to sort the array
[2,9,7,6,5,8].

HEAPSORT 51

Answer: Sortdown

HEAPSORT

Heapsort analysis

52

▸ Heap construction makes exchanges and compares.

▸ Sortdown and therefore the entire heap sort exchanges and compares.

▸ In-place sorting algorithm with worst-case!

▸ Remember:

▸ mergesort: not in place, requires linear extra space.

▸ quicksort: quadratic time in worst case.

▸ Heapsort is optimal both for time and space in terms of Big-O, but:

▸ Inner loop longer than quick sort.

▸ Poor use of cache. Why?

▸ Not stable.

O(n) O(n)

O(n log n)

O(n log n)

HEAPSORT

Sorting: Everything you need to remember about it!

Which Sort In
place

Stable Best Average Worst Remarks

Selection X exchanges

Insertion X X Use for small arrays
or partially ordered

Merge X Guaranteed
performance; stable

Quick X probabilistic
guarantee; fastest!

Heap X Guaranteed
performance; in place

O(n2) O(n2) O(n2) n

O(n2) O(n2)O(n)

O(n log n) O(n log n) O(n log n)

53

O(n log n) O(n log n) O(n2)
n log n

O(n log n) O(n log n) O(n log n)

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Priority Queues and Heapsort

▸ Priority Queue

▸ Heapsort

54

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 2.4 (Pages 308-327), 2.5 (336-344)

▸ Website:

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/

▸ Visualization:

▸ Create (nlogn) and heapsort: https://visualgo.net/en/heap

55

Practice Problems:

▸ 2.4.1-2.4.11. Also try some creative problems.

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 2.4 (Pages 308-327)

▸ Website:

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/

▸ Visualization:

▸ Insert and ExtractMax: https://visualgo.net/en/heap

56

Practice Problems:

▸ Practice with traversals of trees and insertions and deletions in binary heaps

