CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

17: Heaps, Priority Queue, Heap Sort

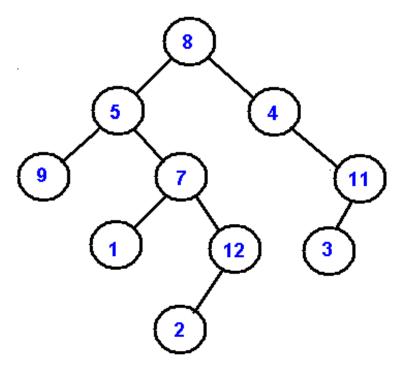
Tom Yeh he/him/his

Recap

Binary Tree

Tree Traversal: pre-order, in-order, post-order, and level

order:

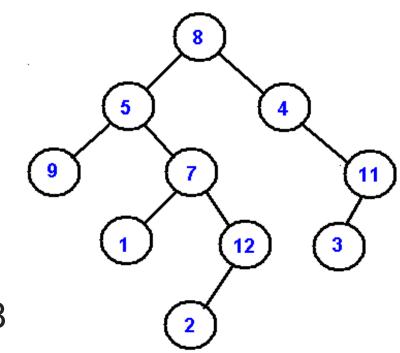


Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3

In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11

Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8

Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2



Lecture 17: Heaps, Priority Queues and Heapsort

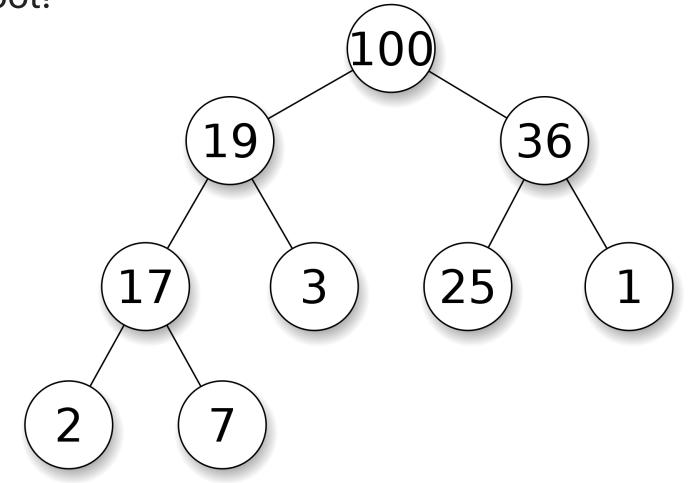
- Binary Heaps
- Priority Queue
- Heapsort

Heap-ordered binary trees

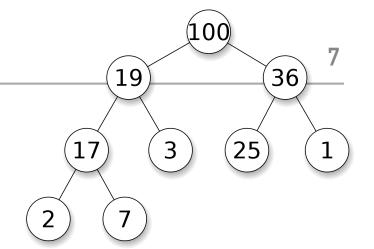
- A binary tree is heap-ordered if the key in each node is larger than or equal to the keys in that node's two children (if any).
- Equivalently, the key in each node of a heap-ordered binary tree is smaller than or equal to the key in that node's parent (if any).
- No assumption of which child is smaller.
- Moving up from any node, we get a non-decreasing sequence of keys.
- Moving down from any node we get a non-increasing sequence of keys.

Heap-ordered binary trees

The largest key in a heap-ordered binary tree is found at the root!



Binary heap representation



- We could use a linked representation but we would need three links for every node (one for parent, one for left subtree, one for right subtree).
- If we use **complete binary trees**, we can use an array instead.
 - Compact arrays vs explicit links means memory savings and faster execution!
 - Array access is much faster than chasing down pointers

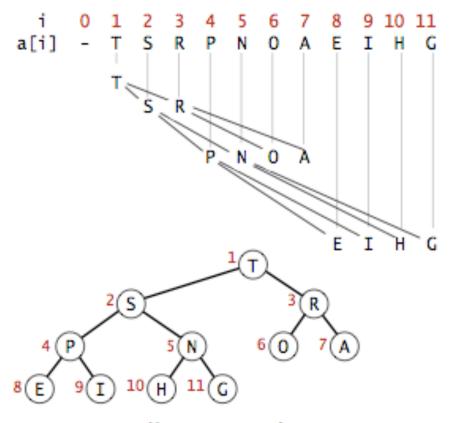
Binary heaps

Binary heap: the array representation of a complete heapordered binary tree.

- Parent's key is not smaller than children's keys.
- Children's keys are not bigger than parent's key.
- Max-heap but there are min-heaps, too.

Array representation of heaps

- Nothing is placed at index 0.
- Root is placed at index 1.
 - Easy indexing between parent/child
- Rest of nodes are placed in level order.
- No unnecessary indices and no wasted space because it's complete.
- What's the relationship between node index and 2 children?



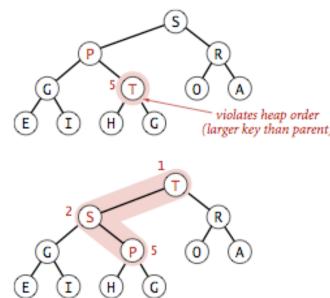
Heap representations

Reuniting immediate family members.

- For every node at index k, its parent is at index $\lfloor k/2 \rfloor$.
- Its two children are at indices 2k and 2k + 1.
- We can travel up and down the heap by using this simple arithmetic on array indices.
- Accesses using indices are much faster than using pointers/references

Swim/promote/percolate up/bottom up reheapify

- Scenario: a key becomes larger than its parent therefore it violates the heap-ordered property.
- To eliminate the violation:
 - Exchange key in child with key in parent.
 - Repeat until heap order restored.



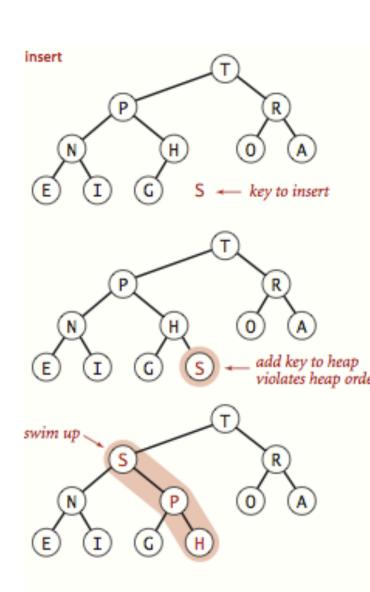
Swim/promote/percolate up

```
private void swim(int k) {
   while (k > 1 \&\& less(k/2, k)) {
       exch(k, k/2);
       k = k/2;
                                                             violates heap order
                                                            (larger key thân parent)
```

Binary heap: insertion

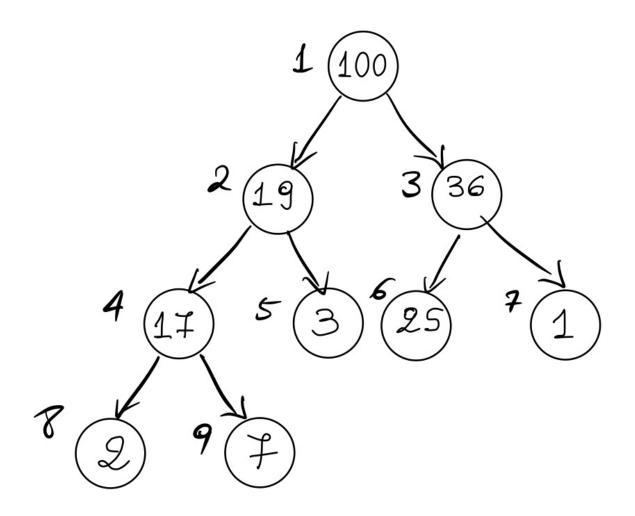
- Insert: Add node at end in bottom level, then swim it up.
- ▶ Cost: At most $\log n + 1$ compares.

```
public void insert(Key x) {
    pq[++n] = x;
    swim(n);
}
```

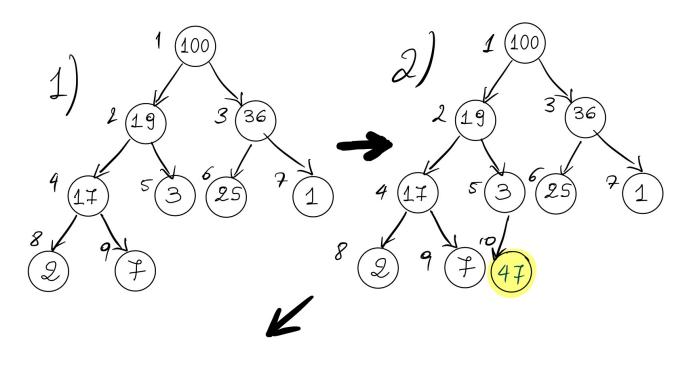


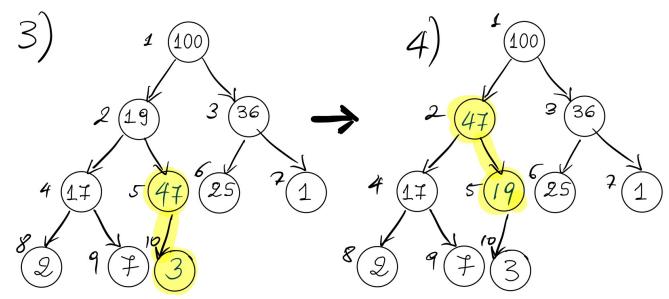
Practice Time

Insert 47 in this binary heap.



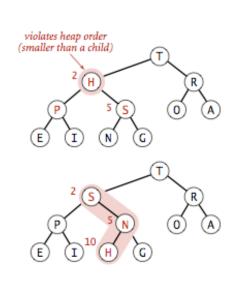
Answer





Sink/demote/top down heapify

- Scenario: a key becomes smaller than one (or both) of its children's keys.
- ▶ To eliminate the violation:
 - Exchange key in parent with key in larger child.
 - Repeat until heap order is restored.

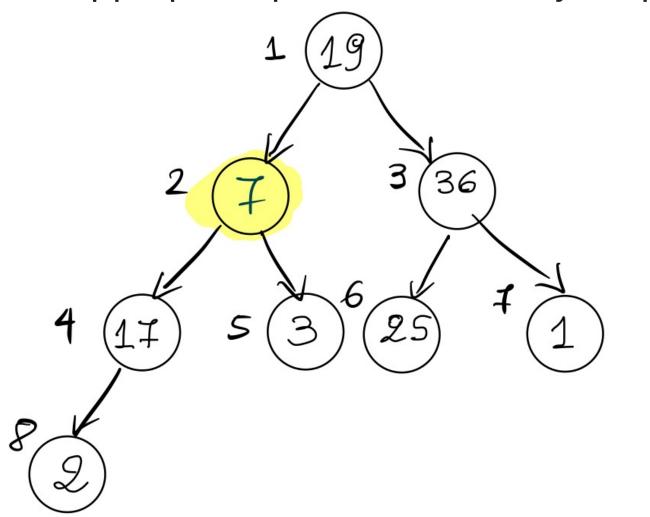


Sink/demote/top down heapify

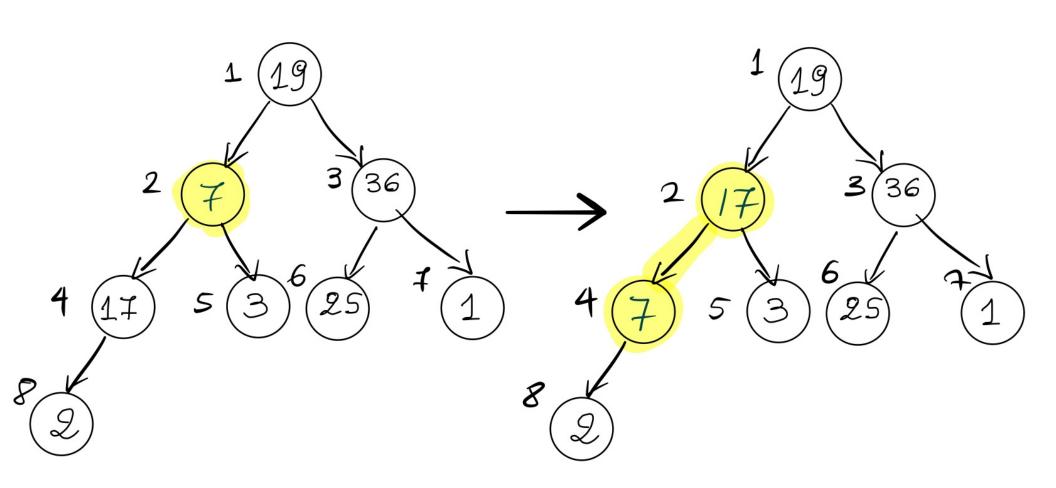
```
violates heap order
private void sink(int k) {
                                       (smaller than a child)
    while (2*k <= n) {
         int j = 2*k;
         if (j < n \& less(j, j+1))
             j++;
         if (!less(k, j))
             break;
         exch(k, j);
         k = j;
```

Practice Time

Sink 7 to its appropriate place in this binary heap.



Answer



Binary heap: return (and delete) the maximum

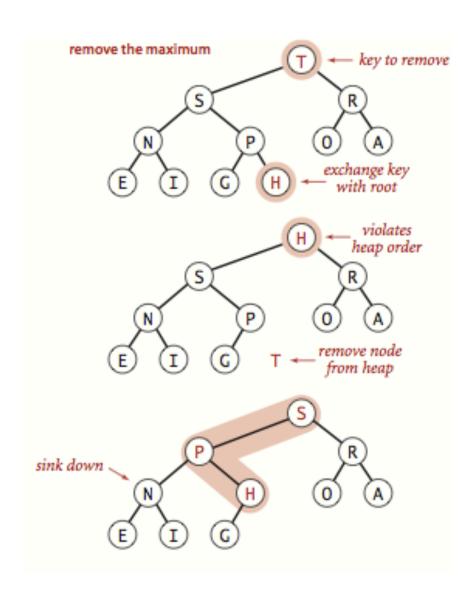
- Delete max: Exchange root with node at end. Return it and delete it. Sink the new root down.
- ightharpoonup Cost: At most $2 \log n$ compares. Why?

```
public Key delMax() {
    Key max = pq[1];
    exch(1, n--);
    sink(1);
    pq[n+1] = null;
    return max;
}
```

Binary heap: return (and delete) the maximum

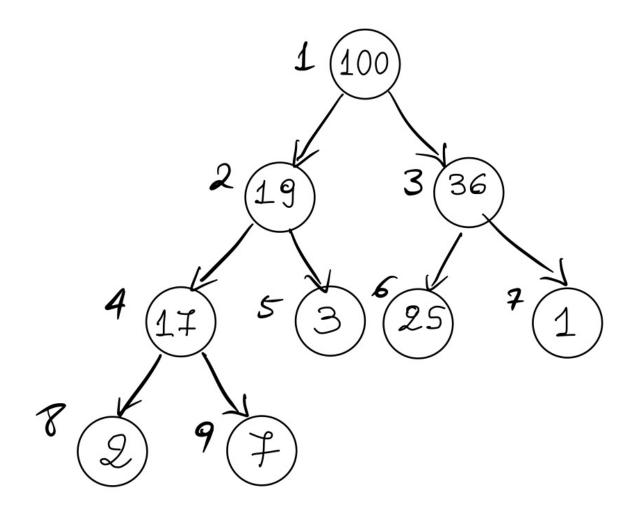
- Delete max: Exchange root with node at end. Return it and delete it. Sink the new root down.
- **Cost:** At most $2 \log n$ compares. Why?

Binary heap: delete and return maximum

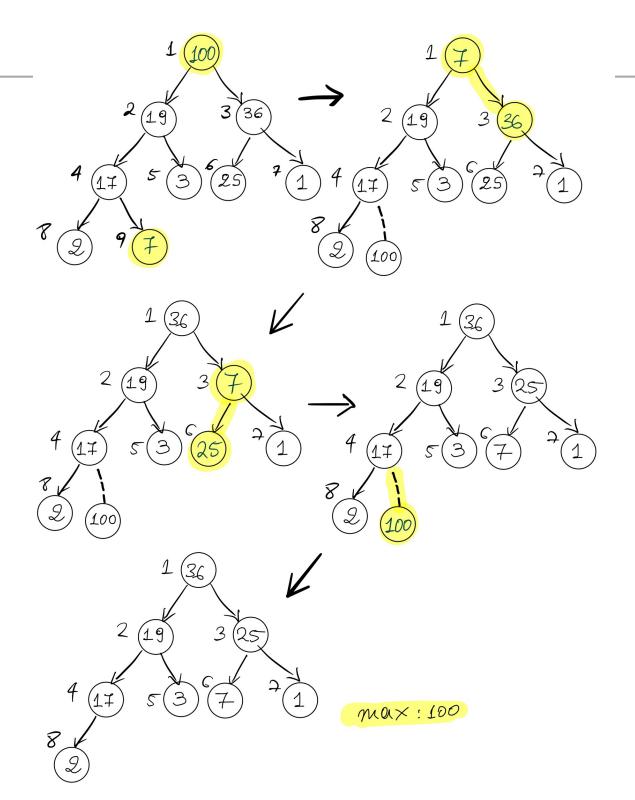


Practice Time

Delete max (and return it!)



Answer



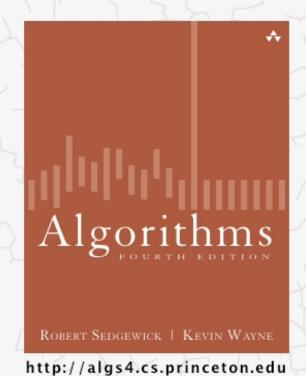
Things to remember about runtime complexity of heaps

- Insertion is $O(\log n)$.
- **Delete** max is $O(\log n)$.
- **Space** efficiency is O(n).

Things to remember about runtime complexity of heaps

- ▶ Insertion is $O(\log n)$.
- Delete max is $O(\log n)$.
- **Space** efficiency is O(n).
 - Array with complete tree

Algorithms



2.4 BINARY HEAP DEMO

Lecture 17: Heaps, Priority Queues and Heapsort

- Binary Heaps
- Priority Queue
- Heapsort

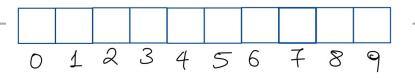
Priority Queue ADT

- Service best element first
 - Compared to FIFO or LIFO
- Two operations:
 - Delete (return) the maximum
 - Insert
- Applications: load balancing and interruption handling in OS, Huffman codes for compression, A* search for AI, Dijkstra's and Prim's algorithm for graph search, etc.
- How can we implement a priority queue efficiently?
 - Unordered array, Ordered array, Binary Heap

Option 1: Unordered array

- The lazy approach where we defer doing work (deleting the maximum) until necessary.
- Insert is O(1) (will be implemented as push in stacks).
- Delete maximum is O(n) (have to traverse the entire array to find the maximum element).

```
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
   private Key[] pq; // elements
   private int n;  // number of elements
   // set inititial size of heap to hold size elements
   public UnorderedArrayMaxPQ(int capacity) {
       pq = (Key[]) new Comparable[capacity];
       n = 0;
   }
   public boolean isEmpty() { return n == 0; }
   public int size() { return n; }
   public void insert(Key x) { pq[n++] = x; } // Insert into index n
   public Key delMax() {
       int max = 0;
       for (int i = 1; i < n; i++)
           if (less(max, i)) max = I; // Find max element
                                     // Exchange max with last element
       exch(max, n-1);
                                       // Return last element
       return pq[-n];
   private boolean less(int i, int j) {
       return pq[i].compareTo(pq[j]) < 0;</pre>
   }
   private void exch(int i, int j) {
       Key swap = pq[i];
       pq[i] = pq[j];
       pq[j] = swap;
   }
}
```



Practice Time

Given an empty array of capacity 10, perform the following operations in a priority queue based on an unordered array (lazy approach):

1. Insert P

7. Insert M

2. Insert Q

8. Delete max

3. Insert E

9. Insert P

4. Delete max

10. Insert L

5. Insert X

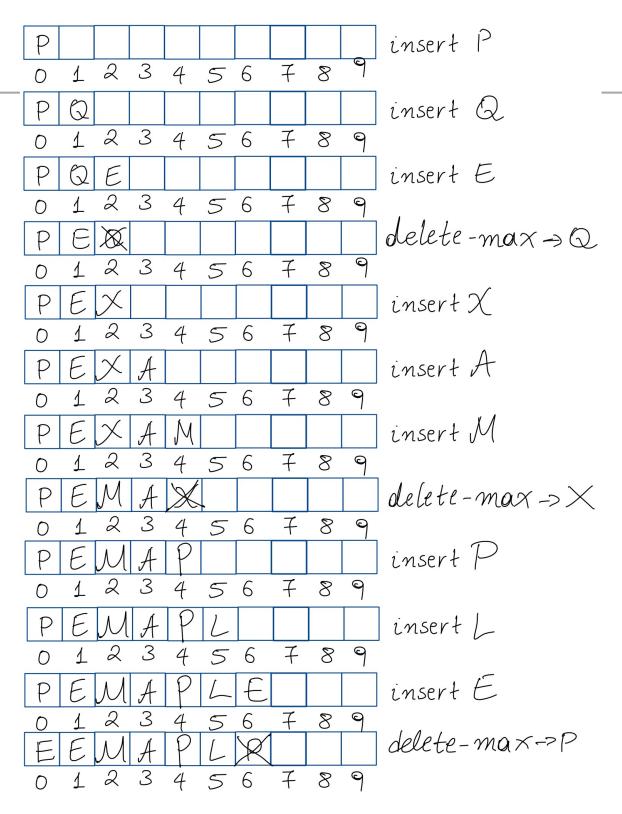
11. Insert E

6. Insert A

12. Delete max

PRIORITY QUEUE

Answer

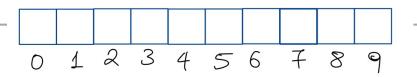


PRIORITY QUEUE 34

Option 2: Ordered array

- The eager approach where we do the work (keeping the list sorted) up front to make later operations efficient.
- Insert is O(n) (we have to find the index to insert and shift elements to perform insertion).
- Delete maximum is O(1) (just take the last element which will the maximum).

```
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
   private Key□ pq;
                      // elements
   private int n;  // number of elements
   // set inititial size of heap to hold size elements
   public OrderedArrayMaxPQ(int capacity) {
       pq = (Key[]) (new Comparable[capacity]);
       n = 0;
    }
   public boolean isEmpty() { return n == 0; }
   public int size()
                            { return n;
   public Key delMax()
                            { return pq[--n]; }
   public void insert(Key key) {
       int i = n-1;
       while (i \ge 0 \&\& less(key, pq[i])) {
           pq[i+1] = pq[i];
                                              // Empty element is at index i
           i--;
                                             // I+1 to get to the empty element
       pq[i+1] = key;
       n++;
    }
  private boolean less(Key v, Key w) {
       return v.compareTo(w) < 0;</pre>
    }
```



Practice Time

Given an empty array of capacity 10, perform the following operations in a priority queue based on an ordered array (eager approach):

1. Insert P

7. Insert M

2. Insert Q

8. Delete max

3. Insert E

9. Insert P

4. Delete max

10. Insert L

5. Insert X

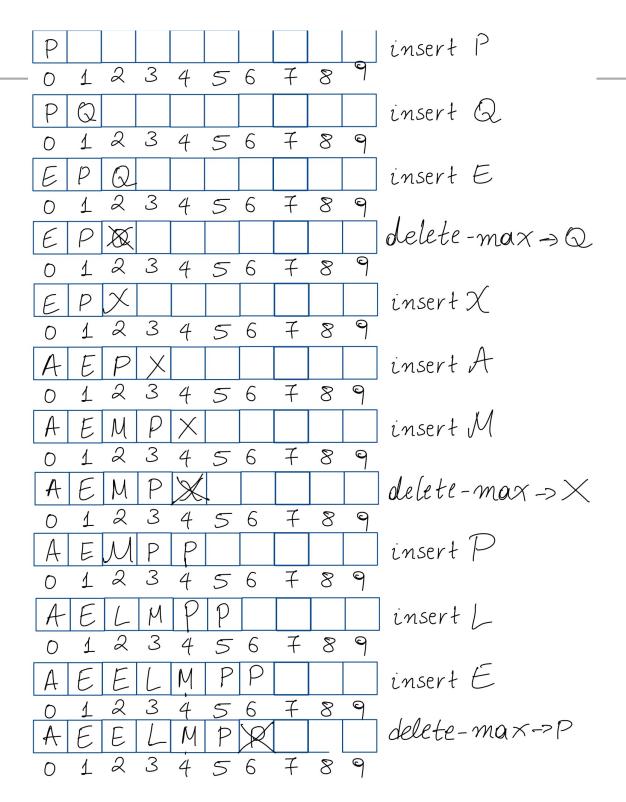
11. Insert E

6. Insert A

12. Delete max

PRIORITY QUEUE

Answer



PRIORITY QUEUE 38

Option 3: Binary heap

- Will allow us to both insert and delete max in $O(\log n)$ running time.
- There is no way to implement a priority queue in such a way that insert and delete max can be achieved in O(1) running time.
- Priority queues are synonyms to binary heaps.

Stopped here

Practice Time

Given an empty binary heap that represents a priority queue, perform the following operations:

1. Insert P

7. Insert M

2. Insert Q

8. Delete max

3. Insert E

9. Insert P

4. Delete max

10. Insert L

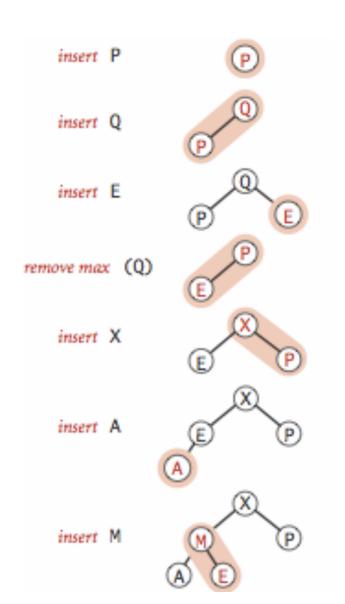
5. Insert X

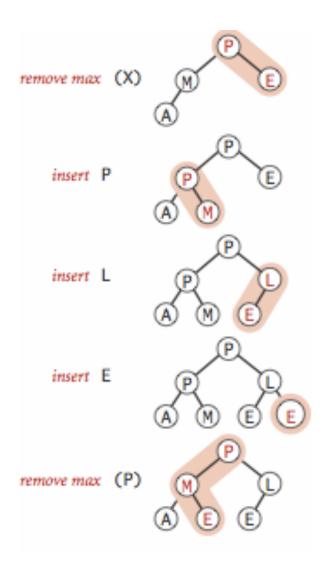
11. Insert E

6. Insert A

12. Delete max

Answer





Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort

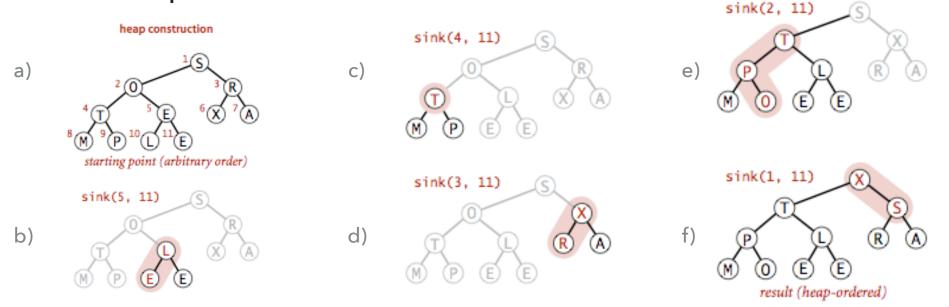
Basic plan for heap sort

- Use a priority queue to develop a sorting method that works in two steps:
- ▶ 1) Heap construction: build a binary heap with all *n* keys that need to be sorted.
- 2) Sortdown: repeatedly remove and return the maximum key.

O(n) Heap construction

- Construct complete binary tree with elements
- ▶ Ignore all leaves (indices n/2+1,...,n).
- for(int k = n/2; k >= 1; k--)
 sink(a, k, n);

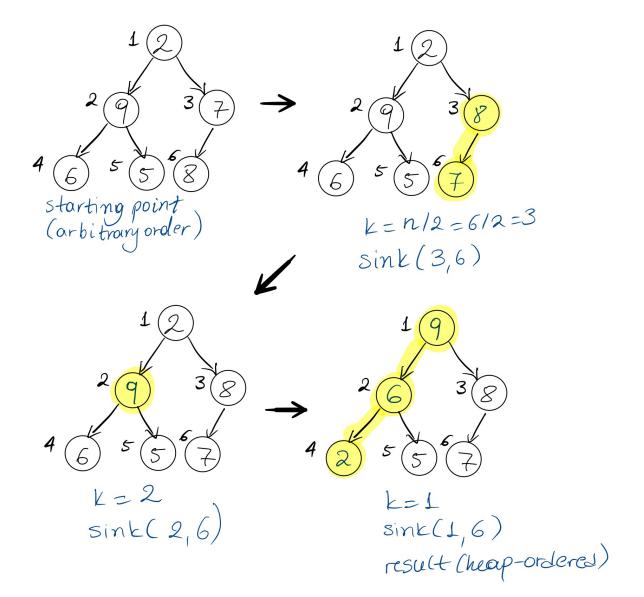
Key insight: After sink(a,k,n) completes, the subtree rooted at k is a heap.



Practice Time

Run the first step of heapsort, heap construction, on the array [2,9,7,6,5,8].

Answer: Heap construction



Sortdown

Remove the maximum, one at a time, but leave in array instead of nulling out.

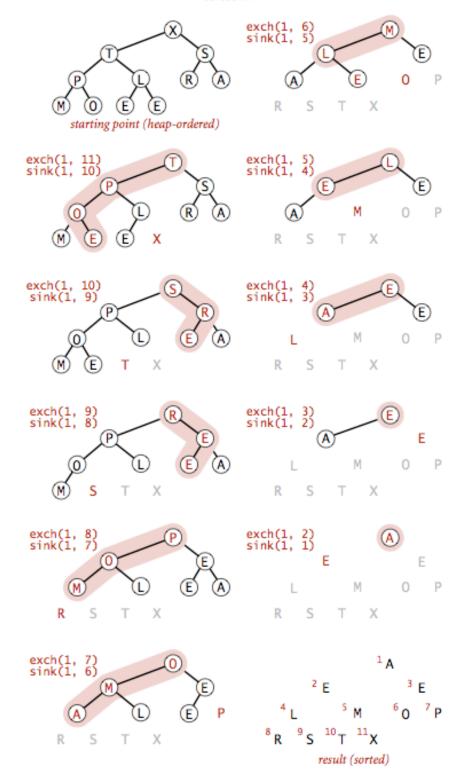
```
while(n>1){
    exch(a, 1, n--);
    sink(a, 1, n);
}
```

Key insight: After each iteration the array consists of a heap-ordered subarray followed by a sub-array in final order.

HEAPSORT

Sortdown

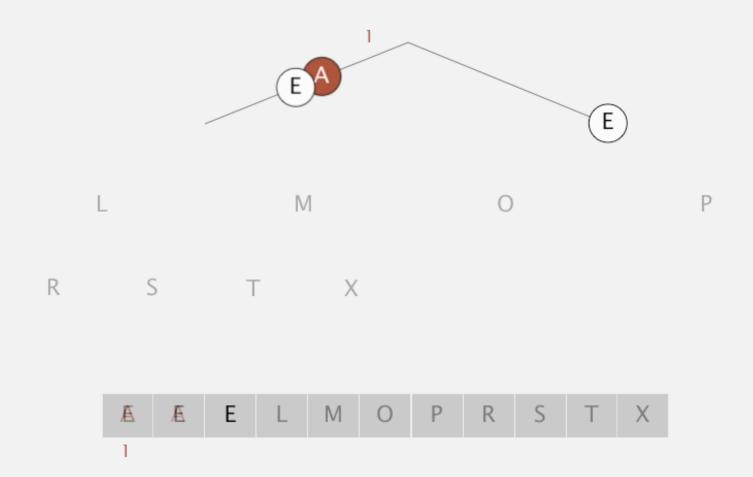
while(n>1){
 exch(a, 1, n--);
 sink(a, 1, n);
}



Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

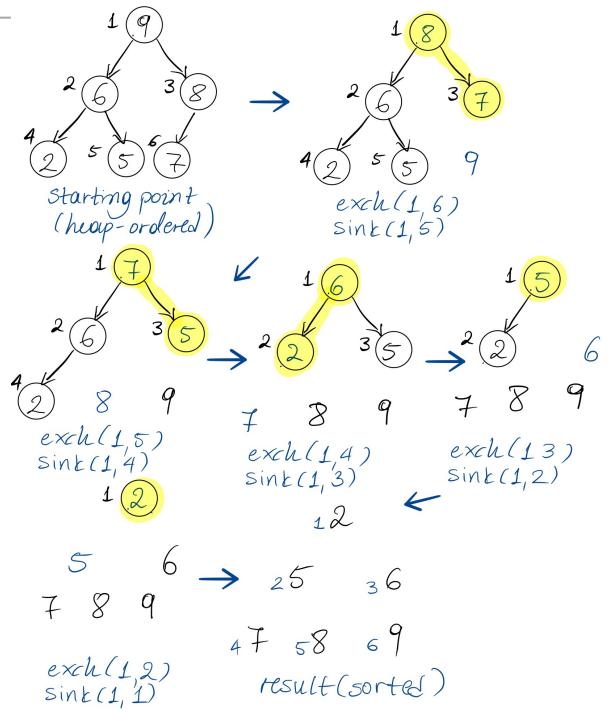
sink 1



Practice Time

• Given the heap you constructed before, run the second step of heapsort, sortdown, to sort the array [2,9,7,6,5,8].

Answer: Sortdown



Heapsort analysis

- ▶ Heap construction makes O(n) exchanges and O(n) compares.
- **>** Sortdown and therefore the entire heap sort $O(n \log n)$ exchanges and compares.
- ▶ In-place sorting algorithm with $O(n \log n)$ worst-case!
- Remember:
 - mergesort: not in place, requires linear extra space.
 - quicksort: quadratic time in worst case.
- ▶ Heapsort is optimal both for time and space in terms of Big-O, but:
 - Inner loop longer than quick sort.
 - Poor use of cache. Why?
 - Not stable.

Sorting: Everything you need to remember about it!

Which Sort	In place	Stable	Best	Average	Worst	Remarks
Selection	Х		$O(n^2)$	$O(n^2)$	$O(n^2)$	n exchanges
Insertion	Х	X	O(n)	$O(n^2)$	$O(n^2)$	Use for small arrays or partially ordered
Merge		X	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	Guaranteed performance; stable
Quick	Х		$O(n \log n)$	$O(n \log n)$	$O(n^2)$	$n \log n$ probabilistic guarantee; fastest!
Неар	Х		$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	Guaranteed performance; in place

Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort

Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327), 2.5 (336-344)
- Website:
 - Priority Queues: https://algs4.cs.princeton.edu/24pg/
- Visualization:
 - Create (nlogn) and heapsort: https://visualgo.net/en/heap

Practice Problems:

2.4.1-2.4.11. Also try some creative problems.

Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327)
- Website:
 - Priority Queues: https://algs4.cs.princeton.edu/24pg/
- Visualization:
 - Insert and ExtractMax: https://visualgo.net/en/heap

Practice Problems:

Practice with traversals of trees and insertions and deletions in binary heaps