B
35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

17: Heaps, Priority Queue, Heap Sort

Tom Yeh
he/him/his

BINARY TREE RECAP

Recap

» Binary Tree

» Tree Traversal: pre-order, in-order, post-order, and level
order:

TREE TRAVERSALS 3

» In-order: 9,5,1,7,2,12,8,4, 3, 11

» Post-order:9,1,2,12,7,5,3,11,4, 8

» Level-order:8,5,4,9,7,11,1,12, 3, 2

TODAY'S LECTURE IN A NUTSHELL

Lecture 17: Heaps, Priority Queues and Heapsort

» Binary Heaps
» Priority Queue

» Heapsort

BINARY HEAP 5

Heap-ordered binary trees
» A binary tree is heap-ordered if the key in each node is larger than
or equal to the keys in that node’s two children (if any).

» Equivalently, the key in each node of a heap-ordered binary tree is
smaller than or equal to the key in that node’s parent (if any).

» No assumption of which child is smaller.

» Moving up from any node, we get a non-decreasing sequence of
keys.

» Moving down from any node we get a non-increasing sequence of
keys.

BINARY HEAP
Heap-ordered binary trees

» The largest key in a heap-ordered binary tree is found at

the root!

BINARY HEAP

Binary heap representation

» We could use a linked representation but we would need

three links for every node (one for parent, one for left
subtree, one for right subtree).

» If we use complete binary trees, we can use an array
instead.

» Compact arrays vs explicit links means memory savings
and faster execution!

» Array access is much faster than chasing down pointers

BINARY HEAP 8
Binary heaps
» Binary heap: the array representation of a complete heap-
ordered binary tree.
» Parent’s key is not smaller than children’s keys.

» Children’s keys are not bigger than parent’s key.

» Max-heap but there are min-heaps, too.

BINARY HEAP 9

Array representation of heaps

» Nothing is placed at index 0. i 0
» Root is placed atindex 1. S~
» Easy indexing between parent/child

» Rest of nodes are placed
in level order.

» No unnecessary indices and no wasted
space because it's complete.

c.g g I\ 13. 11 G
» What's the relationship between node

index and 2 children?

Heap representations

BINARY HEAP

Reuniting immediate family members.

» For every node at index k, its parent is at index |k/2].

» Its two children are at indices 2k and 2k + 1.

» We can travel up and down the heap by using this simple
arithmetic on array indices.

» Accesses using indices are much faster than using
pointers/references

10

BINARY HEAP - ADD AND REMOVE ELEMENTS? 11
Swim/promote/percolate up/bottom up reheapify

» Scenario: a key becomes larger than its parent therefore it
violates the heap-ordered property.

» To eliminate the violation:

» Exchange key in child with key in parent.

» Repeat until heap order restored. /&L

|) lO) |A|

(large k an p.-:.'-.'nr,}

|G|

Gfte

BINARY HEAP 12

Swim/promote/percolate up

private void swim(int k) {
while (k > 1 && less(k/2, k)) {
exch(Ck, k/2);

k = k/2;

~ violates heap order
(larger key than parent)

BINARY HEAP 13
Binary heap: insertion

» Insert: Add node at end in bottom
level, then swim it up.

» Cost: At mostlogn + 1 compares.

public void insert(Key x) {

pal++n] = x;
swim(n);

BINARY HEAP
Practice Time

» Insert 47 in this binary heap.
L
/
2 (3
4 /s— £ / 7 >
DROITING

{ofic

14

BINARY HEAP

Answer

S
s ﬁ@
L/
) R AR
/ /
750 SNadlvs AN

15

BINARY HEAP 16
Sink/demote/top down heapify

» Scenario: a key becomes smaller than one (or both) of its
children’s keys.

» To eliminate the violation:
» Exchange key in parent with key in larger child.

» Repeat until heap order is restored.

S
R

BINARY HEAP 17

Sink/demote/top down heapify

private void sink(int k) { violates heap order
while (2%k <= n) { (smaller than a child)
int j = 2%k; 2\
if (j < n && less(j, j+1)) @
J++;
if (1lessCk,) (P 58
break;
exch(Ck, 3); e o
k = 7J;

BINARY HEAP
Practice Time

» Sink 7 to its appropriate place in this binary heap.
(15,
@
JONOICINE
[©

18

BINARY HEAP

Binary heap: return (and delete) the maximum

» Delete max: Exchange root with node at end. Return it and delete
it. Sink the new root down.

» Cost: At most 2logn compares. Why?

public Key delMax() {
Key max = pq[1];
exch(l, n--);
sink(1);
pg[n+1] = null;
return max;

20

BINARY HEAP 21

Binary heap: return (and delete) the maximum

» Delete max: Exchange root with node at end. Return it and delete
it. Sink the new root down.

» Cost: At most 2logn compares. Why?

public Key delMax() { private void sink(int k) {

Key max = pq[l:l, while (Z*k <= n) {

’ int j = 2*k;

exch(l, n--); if (§ < n & less(j, j+1))

sink(1); J++;

pd[n+1] = null; if (1less(k, 3))

. break;

return max; exchk. 3:

; k =733
}

BINARY HEAP

22

Binary heap: delete and return maximum

remove the maximum
< key to remove

o
9 D © @ it oot

violates

heap order

(P)
® © © T—"mmhep

BINARY HEAP
Practice Time

» Delete max (and return it!)
1
/
2(3
4 /s— ¢ / 7 >
DMOICING

{ofic

23

BINARY HEAP

Answer

i 1@\ 24
N

BINARY HEAP

Things to remember about runtime complexity of heaps

» Insertion is O(log n).
» Delete maxis O(log n).

» Space efficiency is O(n).

25

BINARY HEAP

Things to remember about runtime complexity of heaps

» Insertion is O(log n).
» Delete maxis O(log n).
» Space efficiency is O(n).

» Array with complete tree

26

A l go ri thm S ROBERT SEDGEWICK | KEVIN WAYNE

2.4 BINARY HEAP DEMO

Algorithms

RORERT SEDGEWICK | KEvIN WAYNE

http://algs4.cs.princeton.edu

TODAY'S LECTURE IN A NUTSHELL

28

Lecture 17: Heaps, Priority Queues and Heapsort

» Binary Heaps
» Priority Queue

» Heapsort

PRIORITY QUEUE

Priority Queue ADT

» Service best element first

» Compared to FIFO or LIFO

» Two operations:

» Delete (return) the maximum

» Insert

» Applications: load balancing and interruption handling in OS, Huffman codes for
compression, A* search for Al, Dijkstra’s and Prim's algorithm for graph search, etc.

» How can we implement a priority queue efficiently?

» Unordered array, Ordered array, Binary Heap

PRIORITY QUEUE IMPLEMENTATION
Option 1: Unordered array

» The lazy approach where we defer doing work (deleting
the maximum) until necessary.

» Insertis O(1) (will be implemented as push in stacks).

» Delete maximum is O(n) (have to traverse the entire array
to find the maximum element).

30

PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {

private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public UnorderedArrayMaxPQ(int capacity) {

pq = (Key[]) new Comparable[capacity];

n=0;

}

public boolean isEmpty() { return n == 0;
public int size() { return n; }
public void insert(Key x) { pqln++] = x; } // Insert into index n

public Key delMax() {
int max = 0;
for (int i = 1; 1 < n; i++)

if (less(max, 1)) max = I; // Find max element
exch(max, n-1); // Exchange max with last element
return pq[-n]; // Return last element

}

private boolean less(int i, int j) {
return pq[i].compareTo(pql[jl) < O;
ks

private void exch(int i, int j) {
Key swap = pq[i];
pali] = pqli];
palj] = swap;

31

PRIORITY QUEUE

Practice Time

0 £ R 3 4 56 F 8 9

» Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
unordered array (lazy approach):

1.

> W D

Insert P
Insert Q
Insert E
Delete max
Insert X

Insert A

/. Insert M

8. Delete max

Q. InsertP
10. Insert L
11. Insert E

12. Delete max

32

PRIORITY QUEUE

Answer

p

0 L & 3 4 56
Pl @A

0O 4 R 3 4 5 6
PIQ|E

0 1L X 3 4 56
P|E|IB

0 41 X 3 4 56
PlE X

0 4L X 3 4 56
PIEDS A

0 L R 3 4 5 6
PLEDSAIM

0 4L X 3 4 56
PlEWMIAIX

0 4L X 3 4 56
PIEMIAY

0 41 X 3 4 56
PIEMAIPIL
0 4L X 3 4 56
PlEMIAIPILIE
0 4 R 3 4 56
EIEMIAIPIL
0 41 X 3 4 56

(msert

(msert)
imsert £

0{/6&&%6 -max = ()

33

imser t 9(
imsert A
imsert M
delete-mox - X
imsert P

imsert |

imsert £
delete-marx->P

PRIORITY QUEUE 34

Option 2: Ordered array

» The eager approach where we do the work (keeping the
list sorted) up front to make later operations efficient.

» Insertis O(n) (we have to find the index to insert and shift
elements to perform insertion).

» Delete maximum is O(1) (just take the last element which
will the maximum).

PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public OrderedArrayMaxPQ(int capacity) {

pg = (Key[]) (new Comparable[capacity]);

n=0;

public boolean isEmpty() { return n == 0; }
public int size() { return n; }
public Key delMax() { return pq[--n]; }

public void insert(Key key) {
int 1 = n-1;
while (i >= 0 && less(key, pq[i])) {

pg[i+1] = pq[il; // Empty element is at index 1
1--3
}
pq[i+1l] = key; // I+1 to get to the empty element
N++;

}

private boolean less(Key v, Key w) {
return v.compareTo(w) < 0;

}

35

PRIORITY QUEUE

Practice Time

0 £ R 3 4 56 F 8 9

» Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
ordered array (eager approach):

1.

> W D

Insert P
Insert Q
Insert E
Delete max
Insert X

Insert A

/. Insert M

8. Delete max

Q. InsertP
10. Insert L
11. Insert E

12. Delete max

36

PRIORITY QUEUE

Answer

X

N

U]

b4

"

O O

()]

O}OPQ:FO:Po;pO:pOJpomomomo—ooﬂo

AN e AR T QR R AR A R (R Rt (Na ol R ISR Rl IO Rl AR Rl (D
2T R ol | 0[50 =| 0|2 | 00| B[R] 2| 2@ »

| ||| W= | WO | WO Wo| Wh | W

aat el ool K BN ol e B

N oW o W0

imsert I 37

imsert &

insert £

delete -max -
imsert X

imsert A

imsert M
delete-mooy - <
imsert

imsert |

insert £
delete-marx—>P

PRIORITY QUEUE 38
Option 3: Binary heap
» Will allow us to both insert and delete max in O(log n)

running time.

» There is no way to implement a priority queue in such a

way that insert and delete max can be achieved in O(1)
running time.

» Priority queues are synonyms to binary heaps.

TEXT

39

Stopped here

PRIORITY QUEUE

Practice Time

» Given an empty binary heap that represents a priority
queue, perform the following operations:

1. Insert P /. Insert M
2. Insert Q 8. Delete max
3. InsertE 9. InsertP
4. Delete max 10. Insert L
5. Insert X 11. Insert E

6. Insert A 12. Delete max

PRIORITY QUEUE

41

Answer

insert P @

insert Q
P)
insert E d@
©
remove max (Q)
Q

insert X

insert A) 0

(X)
insert M % P)

remove max (X) @g/ \

®<\

insert L 0

insert E 0 o

TODAY'S LECTURE IN A NUTSHELL

42

Lecture 22: Priority Queues and Heapsort

» Priority Queue

» Heapsort

HEAPSORT 43
Basic plan for heap sort

» Use a priority queue to develop a sorting method that
works in two steps:

» 1) Heap construction: build a binary heap with all n keys
that need to be sorted.

» 2) Sortdown: repeatedly remove and return the maximum
key.

HEAPSORT 4
O(n) Heap construction

» Construct complete binary tree with elements

» Ignore all leaves (indices n/2+1,...,n).

» for(int k = n/2; k >= 1; k--)
sink(a, k, n);

» Key insight: After sink(a,k,n) completes, the subtree rooted at k

is a heap. o
S1NK y 11

heap construction

sink(4, 11)
a) c) e)
® ®
starting point (arbitrary order,
sink(3, 11)

sink(5, 11)

b) é%@ d) ®) ®

result (heap-ordered)

HEAPSORT

Practice Time

» Run the first step of heapsort, heap construction, on the
array [2,9,7,6,5,8].

45

HEAPSORT

Answer: Heap construction

2 3\@
4 /s- t / / £ /
@ @@ 4 s@@
?ﬁ‘iﬁ%iﬁz’;) p=n/2=6/223

/ sink(3,6)
A N
4oL 4
'@ 1@ OB
L= 2 L=1{

S(Y\\QC Q(é) 8*/1!&(.(76)
e [W,of’orcier@>

Poe B

46

HEAPSORT
Sortdown

* Remove the maximum, one at a time, but leave in array
instead of nulling out.

» while(n>1){
exch(Ca, 1, n--);
sink(Ca, 1, n);

5

» Key insight: After each iteration the array consists of a
heap-ordered subarray followed by a sub-array in final
order.

47

HEAPSORT

Sortdown

» while(n>1){
exch(Ca, 1, n--);
sink(Ca, 1, n);

¥

sortdown

el 8 %@D 48
& 0

exch(l, 5)
sink(1, 4)(:)”’,¢—(:)\\(:)
[S)

&w @&

exch(l, 11)
sink(1, 10)

@ E) & X
h(1l, 10 h(1l, 4
esxicnl-c((l. 9)) 9 (snw(gkgl 3% e
(R) (A) E)

©® ® L

exch(l, 9) Q exch(l, 3) ©

sink(1, 8) sink(1, 2)
o & e

h(1, 8 h(1, 2
Sinkdl, 7 ® Sk B ®
(0) E) E
(M) L ® ®

R

h(l, 7) 1
Sink(L, 6) O A
(M) ’E ‘E
(A) L P “L M "o 7p

SR QS lDT llx

result (sorted)

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

HEAPSORT

Practice Time

» Given the heap you constructed before, run the second

step of heapsort, sortdown, to sort the array
[2,9,7,6,5,8].

o0

HEAPSORT

Answer: Sortdown

| i/ i o1
AP A

3{’&1’%7’7’7 POZ)’?IL 6>€LL[_L 4
[//u,aofjoro/&rfo/ Sk, 5_))

B ’
@5@\“@9@ 6

4@
g 9 7 5 9
exch({ 5) & 5 L

xxh ({4 exch ({3)
S‘”“ia ;nt(l 5>) sink(1,2)
2 <
= 6 —> 25 36
¥ q
sF 8 6

W!(
;)ft (111%) result(sorted)

HEAPSORT

Heapsort analysis

» Heap construction makes O(n) exchanges and O(n) compares.
» Sortdown and therefore the entire heap sort O(nlog n) exchanges and compares.
» In-place sorting algorithm with O(n log n) worst-case!
» Remember:
» mergesort: not in place, requires linear extra space.
» quicksort: quadratic time in worst case.
» Heapsort is optimal both for time and space in terms of Big-O, but:
» Inner loop longer than quick sort.
» Poor use of cache. Why?

» Not stable.

52

HEAPSORT 53

Sorting: Everything you need to remember about it!

Which Sort In Stable Best Average Worst Remarks
place
Selection X 0(n2) 0(n2) 0(n2) N exchanges
: O(n 2 2 Use for small arrays
Insertion X (m) O(z) O(z) or partially ordered
Guaranteed
1 1 1
Merge Olnlogn)|Onlogn) | Olnlogn) performance; stable
: nlogn probabilistic
Quick A O(nlogn) O(nlogn) 0(712) guarantee; fastest!
Hea X Guaranteed
P O(nlogn) |O(n logn) | O(nlogn) |performance; in place

TODAY'S LECTURE IN A NUTSHELL

54

Lecture 22: Priority Queues and Heapsort

» Priority Queue

» Heapsort

ASSIGNED READINGS AND PRACTICE PROBLEMS

99

Readings:

» Textbook:
» Chapter 2.4 (Pages 308-327), 2.5 (336-344)
» Website:

» Priority Queues: https://algs4.cs.princeton.edu/24pg/

» Visualization:

» Create (nlogn) and heapsort: https://visualgo.net/en/heap

Practice Problems:

» 2.4.1-2.4.11. Also try some creative problems.

ASSIGNED READINGS AND PRACTICE PROBLEMS

56

Readings:

» Textbook:
» Chapter 2.4 (Pages 308-327)
» Website:

» Priority Queues: https://algs4.cs.princeton.edu/24pg/

» Visualization:

» Insert and ExtractMax: https://visualgo.net/en/heap

Practice Problems:

» Practice with traversals of trees and insertions and deletions in binary heaps

