
CS062  
DATA STRUCTURES AND ADVANCED PROGRAMMING

16: Quicksort, Binary Trees and Heaps

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition 

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition 

Tom Yeh 
he/him/his



TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Quicksort, Binary Trees and Heaps

▸ Quicksort

2



QUICKSORT

Algorithm sketch: 
▸ Shuffle the array. 

▸ Partition so that, for some pivot j: 

▸ Entry a[j] is in place. 

▸ There is no larger entry to the left of j. 

▸ No smaller entry to the right of j. 

▸ Sort each subarray recursively.

3



QUICKSORT

Quicksort Trace

    private static void sort(Comparable[] a, int lo, int hi) { 
        if (hi <= lo) return;
        int j = partition(a, lo, hi);
        sort(a, lo, j-1);
        sort(a, j+1, hi);
    }

4



QUICKSORT

Great algorithms are better than good ones

‣ Your laptop executes  comparisons per second 
‣ A supercomputer executes  comparisons per second

108

1012

Insertion 
sort

Mergesort Quicksort

Computer
Thousa

nd 
inputs

Millio
n 

inputs

Billion 
inputs

Thousa
nd 

inputs

Million 
inputs

Billion 
inputs

Thousa
nd 

inputs

Million 
inputs

Billion 
inputs

Home Instant 2 
hours

300 
years instant 1 sec 15 min Instant 0.5 sec 10 min

Supercom
puter Instant

1 
secon

d

1 
week instant instant instant instant instant Instant

5



QUICKSORT

Quicksort analysis: best case

‣ Quicksort divides everything exactly in half. 
‣ Similar to merge sort. 
‣ Number of compares is ~ .n log n

6



QUICKSORT

Quicksort analysis: worst case

‣ Data are already sorted or when we always pick the smallest or 
largest key as pivot. 

‣ Number of compares is ~  - quadratic! 
‣ Extremely unlikely (less likely than the probably that your computer is 

struck by lightning) if we shuffle and our shuffling is not broken.

n2

7



QUICKSORT

Things to remember about quick sort

‣  average,  worst, in practice faster than mergesort. 

‣ 39% more compares than merge sort but in practice it is faster 
because it does not move data much.  
‣ Quicksort compares and increments index pointer 
‣ Mergesort moves items into and out of aux array 

‣ Random shuffle = probabilistic guarantee against worst case 

‣ In-place sorting. 
‣ Not stable.

O(n log n) O(n2)

8



QUICKSORT

Quicksort practical improvements

‣ Use insertion sort for small subarrays. 
‣ Best choice of pivot is the median of a small sample.  

▸ For years, Java used quicksort for collections of 
primitives and mergesort for collections of objects due 
to stability.  

▸ Has moved to dual-pivot quick sort (Yaroslavskiy, 
Bentley, and Bloch, 2009) and timsort (Peters, 1993), 
respectively.

9



QUICKSORT

Sorting: the story so far

Which 
Sort

In 
place

Stable Best Average Worst Remarks

Selection X      exchanges

Insertion X X Use for small arrays 
or partially ordered

Merge X Guaranteed 
performance; stable

Quick X
            probabilistic 

guarantee; fastest in 
practice

O(n2) O(n2) O(n2) n

O(n2) O(n2)O(n)

O(n log n) O(n log n) O(n log n)

10

O(n log n) O(n log n) O(n2)
n log n



QUICKSORT

Sorting based on comparisons

‣ All sorting algorithms we have seen so far and we will see 
in this class are compare-based. 

‣ No compare-based sorting algorithm can sort  elements 
in less than  time in the worst case. 
‣ Proof and proper notation in CS140.

n
O(n log n)

11



ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: 

▸ Chapter 2.3 (Pages 288-296) 

▸ Website: 

▸ Quicksort: https://algs4.cs.princeton.edu/23quicksort/ 

▸ Code: https://algs4.cs.princeton.edu/23quicksort/Quick.java.html

12

Practice Problems:

▸ 2.3.1-2.3.4 



THE STORY SO FAR

Basic data structures

▸ Arrays, 

▸ Resizing arrays or arraylists, 

▸ Linked Lists, 

▸ Queues, and 

▸ Stacks. 

▸ Runtime and memory analysis for each one.

13



THE STORY SO FAR

Sorting

▸ Selection sort, 

▸ Insertion sort,  

▸ Mergesort, and 

▸ Quicksort. 

▸ Runtime (comparisons and exchanges), stability, in-place for each 
one. 

▸ Comparators: How to sort a data structure with objects of any class. 

▸ Iterators: How to traverse a data structure.

14



TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees and Heaps

▸ Binary Trees 

▸ Tree traversals 

▸ Binary Heaps

15



BINARY TREES

Trees in Computer Science

▸ Abstract data types that store elements hierarchically rather than linearly. 

▸ Examples of hierarchical structures: 

▸ Organization charts for 

▸ Companies (CEO at the top followed by CFO, CMO, COO, CTO, etc). 

▸ Universities (Board of Trustees at the top, followed by President, then by 
VPs, etc). 

▸ Sitemaps (home page links to About, Products, etc. They link to other pages). 

▸ Computer file systems (user at top followed by Documents, Downloads, 
Music, etc. Each folder can hold more folders.).

16



BINARY TREES

Trees in Computer Science

▸ Hierarchical: Each element in a tree has a single parent 
(immediate ancestor) and zero or more children 
(immediate descendants). 

▸ What if you have multiple parents? 

▸ graphs

17

Real tree root and leaves

CS tree root and leaves



BINARY TREES

Definition of a tree

▸ A tree  is a set of nodes that store elements based on a 
parent-child relationship: 

▸ If  is non-empty, it has a node called the root of , that has 
no parent. 

▸  Here, the root is A. 

▸ Each node , other than the root, has a unique parent node 
. Every node with parent  is a child of .  

▸ E.g., E’s parent is C and F has two children, H and I.

T

T T

v
u u u

18



BINARY TREES

Tree Terminology

19

▸ Edge: a pair of nodes s.t. one is the parent of the other, e.g., (K,C). 

▸ Parent node is directly above child node, e.g., K is parent of C and N. 

▸ Sibling nodes have same parent, e.g., A and F. 

▸ K is ancestor of B. 

▸ B is descendant of K. 

▸ Node plus all descendants gives subtree. Which nodes are in the subtree at N? 

▸ Nodes without descendants are called leaves or external. The rest are called 
internal. Which ones are leaves? Which are internal? 

▸ A set of trees is called a forest.



BINARY TREES

More Terminology

20

▸ Simple path: a series of distinct nodes s.t. there are edges between 
successive nodes, e.g., K-N-V-U. 

▸ Path length: number of edges in path, e.g., path K-C-A has length 2. 

▸ Height of node: length of longest path from the node to a leaf. What is 
height of C? 

▸ Height of tree: length of longest path from the root to a leaf. Height of root? 

▸ Degree of node: number of its children. Degree of C? 

▸ Degree of tree (arity): max degree of any of its nodes. Degree of this tree? 

▸ Binary tree: a tree with arity of 2.



BINARY TREES

Even More Terminology

21

▸ Level/depth of node defined recursively:  

▸ Root is at level 0. 

▸ Level of any other node is equal to level of parent + 1. What is level of 
M? 

▸ It is also known as the length of path from root or number of ancestors 
excluding itself. 

▸ Height of node defined recursively:  

▸ If leaf, height is 0.  

▸ Else, height is max height of child + 1. What is height of N?

Level 0

Height = 0



BINARY TREES

But wait there’s more!

22

▸ Full (or proper): a binary tree whose every node has 0 or 2 
children. Is this tree full? 

▸ Complete: a binary tree with minimal height. Any holes in 
tree would appear at last level to right, i.e., all nodes of last 
level are as left as possible.



BINARY TREES 23

http://code.cloudkaksha.org/binary-tree/types-binary-tree



▸ A: Full 

▸ B: Complete 

▸ C: Full and Complete 

▸ D: Neither Full nor Complete

BINARY TREES

Practice Time: This tree is 

24



▸ A: Full 

▸ B: Complete 

▸ C: Full and Complete 

▸ D: Neither Full nor Complete

BINARY TREES

Answer

25

How do we make it full?



▸ A: Full 

▸ B: Complete 

▸ C: Full and Complete 

▸ D: Neither Full nor Complete

BINARY TREES

Practice Time: This tree is 

26



▸ A: Full 

▸ B: Complete 

▸ C: Full and Complete 

▸ D: Neither Full nor Complete

BINARY TREES

Answer

27

How do we make it full? 
complete?



BINARY TREES

Counting in binary trees

28

▸ Lemma: if  is a binary tree, then at level ,  has  nodes.  

▸ E.g., at level 2, at most 2^2 = 4 nodes (A, F, M, V) 

▸ Theorem: If  has height , then # of nodes  in  satisfy: 
. 

▸ Equivalently, if  has  nodes, then . 

▸ Worst case (Max height): When  or , the tree looks like a 
left or right-leaning “stick”. 

▸ Best case (Min height): When a tree is as compact as possible (e.g., 
complete) it has  height.

T k T ≤ 2k

T h n T
h + 1 ≤ n ≤ 2h+1 − 1

T n log(n + 1) − 1 ≤ h ≤ n − 1

h = n − 1 O(n)

O(log n)

http://code.cloudkaksha.org/binary-tree/types-binary-tree

Level 0

Level 1

Level 2

Level 3

Height = 0



BINARY TREES

Basic idea behind a simple implementation

29

public class BinaryTree<Item> {
private Node root;

/**
 * A node subclass which contains various recursive methods
 *
 * @param <Item>  The type of the contents of nodes
 */
private class Node {

private Item item;

private Node left;
private Node right;  

/**
 * Node constructor with subtrees
 * 
 * @param left   the left node child
 * @param right   the right node child
 * @param item   the item contained in the node
 */
public Node(Node left, Node right, Item item) {

this.left = left;
this.right = right;
this.item = item;

}



TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees and Heaps

▸ Binary Trees 

▸ Tree traversals 

▸ Pre-order, in-order, and post-order 

▸ Prefix indicates order of marking the root of the subtree 
as visited 

▸ Before, between, and after left and right subtrees 

▸ Binary Heaps

30



TREE TRAVERSALS

Pre-order traversal

31

▸ Preorder(Tree) 

▸ Mark root as visited 

▸ Preorder(Left Subtree) 

▸ Preorder(Right Subtree) 

▸ K C A B F D H N M V U



TREE TRAVERSALS

In-order traversal

32

▸ Inorder(Tree) 

▸ Inorder(Left Subtree) 

▸ Mark root as visited 

▸ Inorder(Right Subtree) 

▸ A B C D F H K M N U V 

▸ In-order traversals of binary search tree visits the nodes in 
sorted order



TREE TRAVERSALS

Post-order traversal

33

▸ Postorder(Tree) 

▸ Postorder(Left Subtree) 

▸ Postorder(Right Subtree) 

▸ Mark root as visited 

▸ B A D H F C M U V N K



TREE TRAVERSALS

Level-order traversal

34

▸ From left to right, mark nodes of level  as visited before 
nodes in level . Start at level 0. 

▸ K C N A F M V B D H U 

i
i + 1



TREE TRAVERSALS

Practice Time

35

▸ List the nodes in pre-order, in-order, post-order, and level 
order:



TREE TRAVERSALS

Answer

36

▸ Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3 

▸ In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11 

▸ Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8 

▸ Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2



TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees and Heaps

▸ Binary Trees 

▸ Tree traversals 

▸ Binary Heaps

37



BINARY HEAP

Heap-ordered binary trees

▸ A binary tree is heap-ordered if the key in each node is larger than 
or equal to the keys in that node’s two children (if any). 

▸ Equivalently, the key in each node of a heap-ordered binary tree is 
smaller than or equal to the key in that node’s parent (if any). 

▸ No assumption of which child is smaller. 

▸ Moving up from any node, we get a non-decreasing sequence of 
keys. 

▸ Moving down from any node we get a non-increasing sequence of 
keys.

38



BINARY HEAP

Heap-ordered binary trees

▸ The largest key in a heap-ordered binary tree is found at 
the root!

39



BINARY HEAP

Binary heap representation

▸ We could use a linked representation but we would need 
three links for every node (one for parent, one for left 
subtree, one for right subtree). 

▸ If we use complete binary trees, we can use an array 
instead. 

▸ Compact arrays vs explicit links means memory savings 
and faster execution!

40



BINARY HEAP

Binary heaps

▸ Binary heap: the array representation of a complete heap-
ordered binary tree. 

▸ Items are stored in an array such that each key is 
guaranteed to be larger (or equal to) than the keys at 
two other specific positions (children). 

▸ Max-heap but there are min-heaps, too.

41



BINARY HEAP

Array representation of heaps

▸ Nothing is placed at index 0. 

▸ Root is placed at index 1. 

▸ Rest of nodes are placed  
in level order. 

▸ No unnecessary indices and no 
wasted space because it’s 
complete. 

▸ What's the relationship between 
node index and 2 children?

42



BINARY HEAP

Reuniting immediate family members.

▸ For every node at index , its parent is at index . 

▸ Its two children are at indices  and . 

▸ We can travel up and down the heap by using this simple 
arithmetic on array indices. 

▸ Accesses using indices are much faster than using 
pointers/references 

k ⌊k/2⌋

2k 2k + 1

43



BINARY HEAP - ADD AND REMOVE ELEMENTS?

Swim/promote/percolate up/bottom up reheapify

▸ Scenario: a key becomes larger than its parent therefore it 
violates the heap-ordered property. 

▸ To eliminate the violation: 

▸ Exchange key in child with key in parent. 

▸ Repeat until heap order restored.

44



BINARY HEAP

Swim/promote/percolate up

private void swim(int k) {
   while (k > 1 && less(k/2, k)) {
      exch(k, k/2);
      k = k/2;
   }
}

45



BINARY HEAP

Binary heap: insertion

46

▸ Insert: Add node at end in bottom 
level, then swim it up. 

▸ Cost: At most  compares. 
 
public void insert(Key x) {  
   pq[++n] = x;  
   swim(n);  
}

log n + 1



BINARY HEAP

Practice Time

47

▸ Insert 47 in this binary heap.



BINARY HEAP

Answer

48



BINARY HEAP

Sink/demote/top down heapify

▸ Scenario: a key becomes smaller than one (or both) of its 
children’s keys. 

▸ To eliminate the violation: 

▸ Exchange key in parent with key in larger child. 

▸ Repeat until heap order is restored.

49



BINARY HEAP

Sink/demote/top down heapify

private void sink(int k) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && less(j, j+1))
            j++; 
        if (!less(k, j))
            break; 
        exch(k, j); 
        k = j; 
    } 
}

50



BINARY HEAP

Practice Time

51

▸ Sink 7 to its appropriate place in this binary heap.



BINARY HEAP

Answer

52



BINARY HEAP

Binary heap: return (and delete) the maximum

53

▸ Delete max: Exchange root with node at end. Return it and delete 
it. Sink the new root down. 

▸ Cost: At most  compares. 
 
public Key delMax() {  
    Key max = pq[1];  
    exch(1, n--);  
    sink(1);  
    pq[n+1] = null;  
    return max;  
} 

2 log n



BINARY HEAP

Binary heap: delete and return maximum

54



BINARY HEAP

Practice Time

55

▸ Delete max (and return it!)



BINARY HEAP

Answer

56



BINARY HEAP

Things to remember about runtime complexity of heaps

57

▸ Insertion is . 

▸ Delete max is . 

▸ Space efficiency is .

O(log n)

O(log n)

O(n)



58



TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees and Heaps

▸ Binary Trees 

▸ Tree traversals 

▸ Binary Heaps

59



ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: 

▸ Chapter 2.4 (Pages 308-327) 

▸ Website: 

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/ 

▸ Visualization: 

▸ Insert and ExtractMax: https://visualgo.net/en/heap

60

Practice Problems:

▸ Practice with traversals of trees and insertions and deletions in binary heaps


