
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

1: Introduction & Object-Oriented Programming

Tom Yeh
he/him/his

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

FUNDAMENTALS

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction & Object-Oriented Programming

▸ Introductions

▸ Motivation

▸ Logistics

▸ Object-Oriented Programming Paradigm

▸ Java Basics

2

Some slides adopted from Princeton C0S226 course, Algorithms, 4th Edition, Oracle tutorials

INTRODUCTIONS

Our team

3

George Johnson
he/him/his

Sam Sasaki
he/him/his

Aidan Garton
he/him/his

Kacie Lee
she/her/hers

Adeena Liang
they/them/their

Ion Tsichrintzi
she/her/hers

Naomi Amuzie
she/her/hers

Carl Bell
he/him/his

INTRODUCTIONS

Slack Channels

▸ If registered, already invited to cs62-fa2021 channel in
Division-II Pomona Slack workspace.

▸ Please let me know if you have not been added yet.

▸ You can post questions anonymously, too.

▸ Department-wide slack workspace:
https://tinyurl.com/PomonaCSSlack

INTRODUCTIONS
0HHW�WKH�������&6�/LDLVRQV�

+HOOR��ZRUOG��,ȢP�*DEULHO�.RQDU�6WHHQEHUJ��KH�KLP���MXQLRU�&6�PDMRU�IURP
0LQQHDSROLV��7KLV�LV�P\�VHFRQG�\HDU�DV�D�OLDLVRQ�DQG�D�7$��,ȢP�PRVW
LQWHUHVWHG�LQ�DSSO\LQJ�FRPSXWLQJ�WR�VRFLHWDO�SUREOHPV��RWKHU�LQWHUHVWV
LQFOXGH�SKLORVRSK\��HQYLURQPHQWDO�DQDO\VLV��GHVFHQGLQJ�:LNLSHGLD�UDEELW
KROHV��DQG�EHLQJ�RXWVLGH��)HHO�IUHH�WR�FRQWDFW�PH�DERXW�DQ\WKLQJ�DW
JPND����#P\PDLO�SRPRQD�HGX�RU�RQ�6ODFN�

+L��,
P�6HDQ�2
&RQQRU��KH�KLP���D�6HQLRU�DQG�D�QRQWUDGLWLRQDO�WUDQVIHU
VWXGHQW�ZKR�SUHYLRXVO\�ZRUNHG�LQ�(06�IRU���\HDUV��$VN�PH�DERXW�P\

UHVHDUFK�RQ�SULYDF\�DQG�VXUYHLOODQFH��VRFLDO�MXVWLFH�DQG�WHFK�HWKLFV��RU
VXUYLYLQJ�&6�FRXUVHV�DV�D�ODWH�FRQYHUW�IURP�WKH�KXPDQLWLHV

�VZRZ����#P\PDLO�SRPRQD�HGX��

+HOOR��,
P�0HUF\�%LFNHOO��VKH�KHUV��DQG�,
P�D�VHQLRU�&6�PDMRU��FRJ�VFL�PLQRU��,
DP�D�ILUVW�WLPH�OLDLVRQ�DQG�WKLUG�WLPH�7$��,
P�ORRNLQJ�IRUZDUG�WR�PHHWLQJ�QHZ
DQG�ROG�VWXGHQWV�DOLNH�WKLV�\HDU��,�DP�SDUWLFXODUO\�LQWHUHVWHG�LQ�1/3�DQG�WKH
VWXG\�RI�ODQJXDJH�LQ�JHQHUDO��,�DOVR�ORYH�YLGHR�JDPHV�DQG�ERDUG�JDPHV��<RX
FDQ�FRQWDFW�PH�DQ\WLPH�RQ�6ODFN�RU�DW�PFED����#P\PDLO�SRPRQD�HGX�

+L��,�DP�(U\Q�0D��VKH�KHU���D�VRSKRPRUH�LQWHUHVWHG�LQ�WKH�LQWHUGLVFLSOLQDU\
VWXG\�RI�&6��)HHO�IUHH�WR�FKDW�ZLWK�PH�DERXW�H[SORULQJ�LQWUR�FRXUVHV�DQG

UHVHDUFK�DV�D�QHZ�PHPEHU�RI�&6�FRPPXQLW\��LQWHUGLVFLSOLQDU\�VWXGLHV�OLNH
FRJQLWLYH�VFLHQFH��RU�WUDQVIHUULQJ�IURP�RQOLQH�WR�LQ�SHUVRQ�VWXG\�

�\PDF����#P\PDLO�SRPRQD�HGX�

+L�P\�QDPH�LV�0D\PXXQDK�DQG�P\�SURQRXQV�DUH�VKH�KHU��,�DP�D�ULVLQJ
VRSKRPRUH�KRSLQJ�WR�PDMRU�LQ�FRPSXWHU�VFLHQFH�ZLWK�PLQRU�LQ�HLWKHU
FRJQLWLYH�VFLHQFH�RU�PHGLD�VWXGLHV��0\�HPDLO�LV
PPTD����#P\PDLO�SRPRQD�HGX��)HHO�IUHH�WR�UHDFK�RXW�

+H\�HYHU\RQH��,ȢP�/XFDV�7LDQJFR��KH�KLP��ȡ����$V�VRPHRQH�ZKRȢV�H[SHULHQFHG�WKH
VWUHVV�RI�JHWWLQJ�LQWR�WKH�&6�PDMRU�DW�WKH�ODVW�SRVVLEOH�PLQXWH��,ȢG�ORYH�WR�KHOS

DQ\RQH�ZLWK�DQ\�TXHVWLRQV�UHODWLQJ�WR�&6�PDMRU�SODQQLQJ��,�FDQ�DOVR�HODERUDWH�RQ
&6�UHVHDUFK�DQG�P\�H[SHULHQFHV�DV�D�7$��2I�FRXUVH��,ȢP�DOVR�KDSS\�WR�FKDW�DERXW�

\RXU�IDYRULWH�PRYLH��WKH�RQH�VRQJ�WKDW�\RXȢYH�PHPRUL]HG�WKH�O\ULFV��PHORG\�
KDUPRQ\��DQG�EDFNLQJ�YRFDOV�RI��DQ\�LQWHUHVWLQJ�KLVWRULFDO�VWRULHV��DQG�RI�FRXUVH�

\RXU�IDYRULWH�ZD\�WR�HDW�D�SRWDWR��,I�DQ\�RI�WKH�DERYH�WRSLFV�LQWULJXH�\RX��IHHO�IUHH
WR�UHDFK�PH�DW�OGWD����#P\PDLO�SRPRQD�HGX�

-RLQ�WKH�&6�6ODFN��KWWSV���WLQ\XUO�FRP�3RPRQD&66ODFN

INTRODUCTIONS

3URYLGLQJ�VXSSRUW��UHVRXUFHV��DQG�HQFRXUDJHPHQW�WR�%ODFN
DQG�%URZQ�VWXGHQWV��LQ�FRPSXWHU�VFLHQFH

DPOUBDU�]�NBHBMJ�OHPVBCPV!QPNPOB�FEV

!�3HUVRQDO�DQG�DFDGHPLF�PHQWRULQJ�

!�3UDFWLFH�,QWHUYLHZV

!�0RQWKO\�QHZVOHWWHU�Z��VKDUHG�UHVRXUFHV

!�0RQWKO\�VSHDNHUV�

INTRODUCTIONS

Sakai Surveys Due this Friday at 5pm

▸ “Getting to know you”

▸ “Sorting hat”

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction & Object-Oriented Programming

▸ Introductions

▸ Motivation

▸ Logistics

▸ Object-Oriented Programming Paradigm

▸ Java Basics

8

MOTIVATION

What is CS062?

▸ Beginner to intermediate-level course

▸ Programming and problem solving

▸ Data structures: Emphasis on how to organize data in a
computer based on problem needs

▸ Advanced Programming: Emphasis on how to write
efficient algorithms for modern applications following the
Object-Oriented Programming (OOP) paradigm

9

MOTIVATION

Why study Data Structures and Algorithms?

▸ Their impact is broad and far-reaching

▸ Web search, protein folding, compiler, circuit layout, movies, games

▸ Security, music, videos, recommendations, particle simulations

▸ They may unlock the secrets of life and of the universe

▸ Old roots, new opportunities

▸ To become a proficient programmer

▸ For intellectual stimulation

▸ For fun and profit

▸ To major/minor in Computer Science

10

MOTIVATION

Their impact is broad and far-reaching

11

MOTIVATION

They may unlock the secrets of life and of the universe

12

Computational models are replacing
math models in scientific inquiry

Algorithms and Data structures significantly
impact Simulations

MOTIVATION

Old roots, new opportunities

http://macbookandheels.com/algorithm/2018/10/31/teachingds/

MOTIVATION

To be a proficient programmer

▸ “Bad programmers worry about the code. Good
programmers worry about data structures and their
relationships”
Linus Torvalds (architect of Linux and git)

▸ “Algorithms + Data Structures = Programs”
Niklaus Wirth

MOTIVATION

For intellectual stimulation

▸ “For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and even
mysterious. But once unlocked, they cast a brilliant new
light on some aspect of computing.”
Francis Sullivan, The Joy of Algorithms

MOTIVATION

For fun and profit

https://www.pinterest.com/pin/89931323793521544/

MOTIVATION

To major/minor in Computer Science

MOTIVATION

A quick overview of lecture topics

18

Topic Data Structures/Algorithms

Fundamentals Arrays

Basic Data Structures ArrayLists, Linked Lists, Stacks, Queues

Sorting
Bubblesort, Selection sort, Insertion Sort, Shellsort,
Quicksort, Mergesort, Heapsort, Heaps, Priority Queues

Searching BSTs, red-black trees, 2-3 search trees, hash tables

Graphs BFS, DFS, Prim, Kruskal, Dijsktra

MOTIVATION

The advanced programming side of CS62

19

▸ In contrast to CS51, labs and assignments will typically be different.

▸ Labs are shorter and deliverables are due Wednesday midnight.

▸ Assignments are week-long, due on Tuesday midnight.

▸ Labs will mostly teach you tools:

▸ CLI, Eclipse, Debugger, Unit testing, git, profiling, etc

▸ In some labs you will implement data structures that we see in lectures.

▸ Assignments will be deliberately vague and will be using data structures to solve
interesting problems.

▸ Realistically, no one will hire you and give you the steps to solve a problem.

▸ But we are here to help you understand how to approach problems!

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction & Object-Oriented Programming

▸ Introductions

▸ Motivation

▸ Logistics

▸ Object-Oriented Programming Paradigm

▸ Java Basics

20

LOGISTICS

Prerequisites

▸ Officially, CS054 at Pomona

▸ We assume you are comfortable with moderate-size programs

▸ Loops

▸ Conditionals

▸ Procedures/methods/functions

▸ Objects

▸ Recursion

▸ Comfortable with proofs

▸ Familiar with concepts of time/memory efficiency

21

DON’T WORRY!
REVIEW DURING FIRST TWO WEEKS

LOGISTICS

How can I succeed in CS062?

▸ Have breakfast, come to class, be on time

▸ Take notes, participate, ask questions, don’t stay confused

▸ Review slides and do the assigned reading/problems after each lecture

▸ Start the assignments early

▸ Use the tools we learn in the lab (e.g., Debugger)

▸ Practice writing code on paper

▸ Learn how to read and write documentation

▸ Come to office hours/mentor sessions/your learning community

▸ But ask for help after you have tried solving a problem by yourself

▸ Did I say start early?

22

LOGISTICS

How can I be a good citizen in CS062?

▸ Try to avoid using laptops/tablets/phones/other fancy electronics.

▸ Unless you use them for note taking :)

▸ Be mindful when in office hours/mentor sessions of the number of
other students waiting for help.

▸ Come with specific questions!

▸ Take advantage of learning communities for more focused attention by TA and
conversations with your team members.

▸ TAs are students, too. Respect their time outside mentor sessions.

▸ We encourage collaboration but we want you to submit your own code.

23

LOGISTICS

What will my average week look like?

▸ TR lectures.

▸ Thursday quizzes.

▸ Wednesday labs (mandatory) due on Wednesday
midnight.

▸ Weekly assignments due on Tuesday midnight.

BUDGET AT LEAST 8 HOURS OUTSIDE THE CLASSROOM

24

LOGISTICS

Grading summary

▸ Weekly Programming Assignments: 35%

▸ penalty for each late day

▸ Can take a 3-day extension once - use wisely

▸ Midterm I: 15%

▸ Midterm II: 15%

▸ Final Exam: 25%

▸ Quizzes: 5%

▸ Can skip one quiz - use wisely

▸ Labs: 5%

25

3n %

More information: http://www.cs.pomona.edu/classes/cs62/

LOGISTICS

Resources

▸ Textbook: Algorithms 4th edition by R. Sedgewick and K. Wayne, Addison-Wesley Professional, 2011, ISBN 0–321–
57351–X.

▸ Booksite: http://algs4.cs.princeton.edu/

▸ Brief summary of content

▸ Exercises

▸ Code

▸ Slack channel: monitored by the entire staff.

▸ Github: to submit assignments - you cannot make your code publicly available.

▸ Office hours:

▸ Yeh - TR 11am-11:50 am (Gathertown), F 2:pm-4pm

▸ Mentor sessions: TBD

▸ Learning communities: TBD (fill sorting hat survey!)

▸ Course website: http://www.cs.pomona.edu/classes/cs62/

26

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction & Object-Oriented Programming

▸ Introductions

▸ Motivation

▸ Logistics

▸ Object-Oriented Programming Paradigm

▸ Java Basics

27

OBJECT-ORIENTED PROGRAMMING PARADIGM

What is Object-Oriented Programming (OOP)?

▸ “a method of implementation in which programs are organized
as cooperative collections of objects, each of which represents
an instance of some class, and whose classes are all members
of a hierarchy of classes united via inheritance relationships”.
Grady Booch

▸ Popular OOP languages: Java, C++, C#, Python (kinda).

28

OBJECT-ORIENTED PROGRAMMING PARADIGM

What is an object?

▸A software bundle of related state (data) and behavior (procedures working on
that data).

▸Can have a physical existence e.g., a customer, a ticket, a car, a post.

▸Can have an intangible conceptual existence e.g., a meeting, a process.

▸ State: the individual characteristics stored in fields (or variables).

▸ e.g., an object that represents a bicycle has fields for storing its current speed
(18mph) and gear (5th)

▸Behavior: methods (or functions) operate on internal state of objects and serve
as the primary mechanism for object-to-object communication.

▸ e.g., change gear, apply brakes, speed up or down, etc.

29

OBJECT-ORIENTED PROGRAMMING PARADIGM

What is a class?

▸A blueprint or prototype from which objects are created.

▸An object is an instance of a class and the process of creating
it is called instantiation.

30

OBJECT-ORIENTED PROGRAMMING PARADIGM

Practice Time

▸Models of real-world objects contain ___ and ___.

▸ A software object’s state is stored in ___.

▸ A software object’s behavior is exposed through ___.

▸ A blueprint for a software object is called a ___.

31

OBJECT-ORIENTED PROGRAMMING PARADIGM

Answers

▸Models of real-world objects contain fields and methods.

▸ A software object’s state is stored in fields.

▸ A software object’s behavior is exposed through methods.

▸ A blueprint for a software object is called a class.

32

https://docs.oracle.com/javase/tutorial/java/concepts/QandE/answers.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction & Object-Oriented Programming

▸ Introductions

▸ Motivation

▸ Logistics

▸ Object-Oriented Programming Paradigm

▸ Java Basics

33

JAVA BASICS

Declaring classes

public class MyClass {

 // field, constructor, and method declarations

}

‣ Class name is a noun and capitalized by convention.

‣ The class body is surrounded by curly braces.

34

JAVA BASICS

A possible implementation of a bicycle class in Java

/**
 * Represents a bicycle
 * @author https://docs.oracle.com/javase/tutorial/java/concepts/class.html
*/
public class Bicycle {

 //instance variables
 private int cadence = 0;
 private int speed = 0;
 private int gear = 1;

 public void changeCadence(int newValue) {
 cadence = newValue;
 }

 public void changeGear(int newValue) {
 gear = newValue;
 }

 public void changeSpeed(int change) {
 speed = speed + change;
 }

 public int getCadence() {
 return cadence;
 }

 public void printGear() {
 System.out.println("Gear:" + gear);
 }

 public String toString() {
 return "cadence:" + cadence + " speed:" + speed + " gear:" + gear;
 }
}

35

‣ All code in a Java program must belong to a class.
‣ // comment within a line.
‣ /* multi-line comment.*/
‣ /**documentation comment (JavaDoc).*/
‣ The source code is saved in .java files.
‣ The name of the class should match the name of

the source file e.g., Bicycle.java.
‣ Curly braces ({ and }) are used to surround

bodies of classes, methods, and loops.
‣ Statements end with a semicolon (;).
‣ Fields cadence, speed, gear represent the state of

a bicycle object.
‣ Methods changeCadence, changeGear, etc.

define how the object will interact with the world.
‣ System.out.println is Java’s way of printing a

string to the console.
‣ Override toString if you want to change how

objects are printed.
‣ To run your code you will need a special method

called main - there is no main in the Bicycle class.
‣ You can have a main method per class. Typically

one of them will control the program and the rest
will be used to test each class.

JAVA BASICS

Bicycle Demo program

/**
 * Basic demonstration of how to work with bicycle objects
 * @author https://docs.oracle.com/javase/tutorial/java/concepts/class.html
 *
 */

public class BicycleDemo {
 public static void main(String[] args) {

 // Create two different Bicycle objects
 Bicycle bike1 = new Bicycle();
 Bicycle bike2 = new Bicycle();

 System.out.println(bike1);

 // Invoke methods on those objects
 bike1.changeCadence(50);
 bike1.changeSpeed(10);
 bike1.changeGear(2);
 bike1.printGear();
 System.out.println(bike1);

 bike2.changeCadence(50);
 bike2.changeSpeed(10);
 bike2.changeGear(2);
 bike2.changeCadence(40);
 bike2.changeSpeed(-10);
 bike2.changeGear(3);
 bike2.printGear();
 System.out.println(bike1);
 System.out.println(bike2);

 }
}

36

‣ In the main method, we instantiate two objects of
type Bicycle with the new keyword, that is two
new bicycles are being brought into this world.

‣ Object name + dot operator + method/variable to
create a reference to an object’s method/field
‣ e.g., bike1.changeCadence(50);

‣ Void methods do not return anything.
‣ printGear is void

‣ System.out.println(someObject) calls the
toString method of the class someObject
belongs to.

WHAT WILL THIS PROGRAM PRINT?
cadence:0 speed:0 gear:1
Gear:2
cadence:50 speed:10 gear:2
Gear:3
cadence:50 speed:10 gear:2
cadence:40 speed:0 gear:3

JAVA BASICS

Access Modifiers

‣ public modifier - the field/method is accessible from all
classes.

‣ private modifier - the field/method is accessible only
within its own class.

‣ More that we will learn later…

37

JAVA BASICS

Variables

▸ Containers for storing data values.

▸ Java is statically-typed: all variables must be declared
along with their data type before they can be used.

▸ e.g., int cadence = 0;

▸ e.g., String name;

▸ Data types: primitives, classes, interfaces, and arrays.

38

JAVA BASICS

Instance variables (non-static or member fields)

▸ Declared in a class but outside of any method.

▸ Each object has its own unique copy of the variable. E.g.,

public class Bicycle {

 private int cadence = 0;
 private int speed = 0;
 private int gear = 1;  
}
▸ Invoked as myObject.variableName

▸ It’s always a good idea to keep them private.

39

JAVA BASICS

Static variables (class fields)

▸ Declared with the static modifier.

▸ All objects share the same copy. E.g.,

public class Bicycle {

 public static int numberOfBicycles;  
}
▸ Invoked as ClassName.variableName  

USE SPARINGLY!

40

JAVA BASICS

Local variables

▸ Declared within a method.

▸ Destroyed after the execution of the method.

▸ Can only be accessed within the method.

▸ No access modifier.

▸ public int countToTen() {

 int counter = 0;
 //…  
}

41

JAVA BASICS

Naming Variables

▸ Variable names are case-sensitive.

▸ No white space.

▸ Start with small letter.

▸ Subsequent characters can be letters, digits, $, or _.

▸ Use full words that make sense.

▸ If name contains more than two words, capitalize the first letter of
each subsequent word. e.g., numberOfBicycles.

▸ If your variable is a constant, capitalize everything. e.g., PI.

42

JAVA BASICS

Identifier

‣ The name of a class, interface, method, or variable.

‣ Each category has its own naming conventions.

43

JAVA BASICS

Primitive Data Types

▸ Java supports 8 primitive data types.

▸ Primitives use a small amount of memory to represent a single item
of data and support certain operations on its value.

▸ All data of same primitive data type use the same amount of
memory.

▸ Cannot be used to instantiate type variables, that is no new keyword.

▸ Have corresponding object “wrapper” types:

▸ Integer, Double, Float, Boolean, etc.

44

JAVA BASICS

Primitive Data Types

45

Type Bits Default Example
byte 8 0 byte b = 10;
short 16 0 short s = 2;
int
Lo

32 0 int i = 47;
long 64 0L long l = 4747L;
float 32 0.0f float f = 47.0f;
double 64 0.0 double d = 47.0;
char 16 '\u0000' char c = 'a';

boolean 1 false boolean fun = true;
The compiler will assign default values to uninitialized instance and static fields.
If you do not initialize local variables you will run into a compile-time error!

JAVA BASICS

The most important primitive data types to know

▸ int - for integers.

▸ double - for real numbers.

▸ boolean - for the set of values {true, false}.

▸ char - for alphanumeric characters and symbols.

▸ STRINGS ARE NOT PRIMITIVES
▸ instead use class String.

46

JAVA BASICS

Classes

‣ Main data types in Java.

‣ e.g., String.

‣ Thousands more coming with Java by default.

‣ You can instantiate your own with the new keyword.

‣ Bicycle myBike = new Bicycle();

‣ Contain fields (can be a primitive or class type) and methods.

‣ Respond to messages to communicate with the outside world by invoking
methods.

‣ Reference default value is null.

47

JAVA BASICS

A vocabulary refresher for variables

‣ Declaration: state the type of variable and its identifier. A variable can only be declared
once. E.g., int x;

‣ Initialization: the first time a variable takes a value. E.g., x = 3;
‣ Can be combined with declaration, e.g., int y = 3;

‣ Assignment: discarding the old value and replacing it with a new. E.g., x = 2;
‣ Static or instance variables are automatically initialized with default values, i.e. null for

references to objects, 0 for int, false for boolean, etc.

‣ Local variables are not automatically initialized and your code won’t compile if you have
not initialized them and you are trying to use them. E.g.,

public void foo() {  
 int x;  
 System.out.println(x);  
 //The local variable x might not have been initialized 
}

48

JAVA BASICS

Practice Time

Consider the following class:

public class IdentifyMyParts {

 public static int x = 7;

 public int y = 3;

}

a. What are the class/static variables?

b. What are the instance/member variables?

c. What is the output from the following code:

IdentifyMyParts a = new IdentifyMyParts();  
IdentifyMyParts b = new IdentifyMyParts();  
a.y = 5;  
b.y = 6;  
a.x = 1;  
b.x = 2;  
System.out.println("a.y = " + a.y);  
System.out.println("b.y = " + b.y);  
System.out.println("a.x = " + a.x);  
System.out.println("b.x = " + b.x);  
System.out.println("IdentifyMyParts.x = " + IdentifyMyParts.x);

JAVA BASICS

Answers

a. x

b. y

c. a.y = 5  
b.y = 6  
a.x = 2  
b.x = 2  
IdentifyMyParts.x = 2

https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/creating-answers.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 1: Introduction & Object-Oriented Programming

▸ Introductions

▸ Motivation

▸ Logistics

▸ Object-Oriented Programming Paradigm

▸ Java Basics

51

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guide: What Is an Object? What Is a Class?
https://docs.oracle.com/javase/tutorial/java/concepts/index.html

▸ Classes and Objects: https://docs.oracle.com/javase/tutorial/java/javaOO/index.html

▸ Variables: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html

52

Practice Problems:

▸ How would you model the ticketing system for a local movie theater in OOP?

