

Admin

Last day for "normal" mentor hours, Friday (5/7)

More on mentor hours next week

2

Operations

Search – Does the key exist in the tree

Insert – Insert the key into tree

Delete – Delete the key from the tree

Height of the tree

Most of the operations take time O(height)

We said trees built from random data have height O(log n), which is asymptotically tight

Two problems:

- We can't always insure random data
- What happens when we delete nodes and insert others after building a tree?

Worst case height for binary search trees is O(n) \otimes

2-3 trees ıll link Anatomy of a 2-3 search tree 2-node: one key and two children (left and right) everything in left is smaller than key everything right is greater than (or equal to) key 3-node: two keys (k_1, k_2) and three children, left, middle and right **k**₁ < k_2 everything in left is less than k₁ $\hfill\blacksquare$ everything in middle is between k_1 and k_2 (greater than or equal to k_1 and less than k₂) everything in right is greater than (or equal to) k₂

Balanced trees

Red-black trees

AVL trees 2-3 trees 2-3-4 trees

B-trees

• • • •

6

Make sure that the trees remain balanced!

Height is guaranteed to be O(log n)

	Insertion
	Like BST, insert always happens at a leaf
	If the leaf is a 2-node, just insert it directly
	If the leaf is a 3-node: We now have three values at this leaf Send the middle value up a node Make new 2-nodes out of the smallest and largest
 24	

Insertion

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:

We now have three values at this leaf

Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Only when the root is a 3-node and we insert into a path that is all 3-nodes!

Effect: The tree can hold quite a few values before having to increase the height

Practice

Draw the 2-3 tree that results when you insert the keys: E A S Y Q U T I O N in that order in an initially empty tree.

Running time

Worst case height: O(log n)

Insert, search and delete are all O(log n)

2-3 search trees in practice

A pain to implement

Overhead can often make slower than standard BST

Other balanced trees exist that provide the same worst case guarantee, but are faster (e.g, red-black trees)

44

Red-black tree high-level

https://www.cs.usfca.edu/~galles/visualization/RedBl ack.html

45