
5/4/21

1

BALANCED SEARCH TREES
David Kauchak
CS 62 – Spring 2021

1

Admin

Last day for “normal” mentor hours, Friday (5/7)

More on mentor hours next week

2

Binary Search Trees

BST – A binary tree where each each node has a key, and every node’s
key is:

¨ Larger than all keys in its left subtree. (everything left is smaller)

¨ Smaller than all keys in its right subtree. (everything right is larger)

12

8

5 9 20

14

3

Operations

Search – Does the key exist in the tree

Insert – Insert the key into tree

Delete – Delete the key from the tree

4

5/4/21

2

Height of the tree

Most of the operations take time
O(height)

We said trees built from random data have height
O(log n), which is asymptotically tight

Two problems:
¤ We can’t always insure random data
¤ What happens when we delete nodes and insert others

after building a tree?

Worst case height for binary search trees is O(n) L

5

Balanced trees

Make sure that the trees remain balanced!
¤ Red-black trees
¤ AVL trees
¤ 2-3 trees
¤ 2-3-4 trees
¤ B-trees
¤ …

Height is guaranteed to be O(log n)

6

2-3 trees

2-node: one key and two children (left and right)
¤ everything in left is smaller than key
¤ everything right is greater than (or equal to) key

3-node: two keys (k1, k2) and three children, left, middle and right
¤ k1 < k2
¤ everything in left is less than k1
¤ everything in middle is between k1 and k2 (greater than or equal to k1

and less than k2)
¤ everything in right is greater than (or equal to) k2

7

Search

How do we search for a key?

8

5/4/21

3

Search

Almost identical to BST search

Only difference: sometimes we have two keys

9

Search

M

Search(H)

Which child?

10

Search

M

E J

Search(H)

Which child?

11

Search

M

E J

H

Search(H)

12

5/4/21

4

Search

M

Search(B)

Which child?

13

Search

M

E J

Search(B)

Which child?

14

Search

M

E J

A C

Search(B)

Which child?

15

Search

M

E J

A C

Search(B)

Not found!

16

5/4/21

5

Search

M

E J

A C H L S XP

R

17

Insertion

Like BST, insert always happens at a leaf

If the leaf is a 2-node, just insert it directly

18

Insertion

If the leaf is a 2-node, just insert it directly

M

E J

A C H L S XP

R

Insert(F)

Where should it go?

19

Insertion

If the leaf is a 2-node, just insert it directly

M

E J

A C H L S XP

R

Insert(F)

20

5/4/21

6

Insertion

If the leaf is a 2-node, just insert it directly

M

E J

A C H L S XP

R

Insert(F)

21

Insertion

If the leaf is a 2-node, just insert it directly

M

E J

A C H L S XP

R

Insert(F)

22

Insertion

If the leaf is a 2-node, just insert it directly

M

E J

A C F H L S XP

R

Insert(F)

23

Insertion

Like BST, insert always happens at a leaf

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

24

5/4/21

7

Insertion

M

E J

A C F H L S XP

R

Insert(T)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

Where should it go?

25

Insertion

M

E J

A C F H L S XP

R

Insert(T)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

26

Insertion

M

E J

A C F H L S T XP

R

Insert(T)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

27

Insertion

M

E J

A C F H L S P

R T

Insert(T)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

X

S T X

R

28

5/4/21

8

Insertion

M

E J

A C F H L S P

R T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

X

Where should it go?

29

Insertion

M

E J

A C F H L S P

R T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

X

30

Insertion

M

E J

A C F H I L S P

R T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

X

31

Insertion

M

E H J

A C F L S P

R T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI

32

5/4/21

9

Insertion

M

E H J

A C F L S P

R T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI

What now?

33

Insertion

M

E H J

A C F L S P

R T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI

Repeat!

34

Insertion

M

E H J

A C F L S P

R T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI

35

Insertion

H M

E J

A C F L S P

R T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI

36

5/4/21

10

Insertion

H M

E

A C F L S P

R T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI

J

37

Insertion

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node

¤ Make new 2-nodes out of the smallest and largest

When will the height of the tree change?

38

Insertion

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node

¤ Make new 2-nodes out of the smallest and largest

Only when the root is a 3-node and we insert into
a path that is all 3-nodes!

Effect: The tree can hold quite a few values
before having to increase the height

39

Practice

Draw the 2-3 tree that results when you insert the keys:
E A S Y Q U T I O N in that order in an initially empty tree.

40

5/4/21

11

Practice

Draw the 2-3 tree that results when you insert the keys:
E A S Y Q U T I O N in that order in an initially empty tree.

41

Running time

Worst case height: O(log n)

What does that mean?

42

Running time

Worst case height: O(log n)

Insert, search and delete are all O(log n)

43

2-3 search trees in practice

A pain to implement

Overhead can often make slower than standard BST

Other balanced trees exist that provide the same
worst case guarantee, but are faster (e.g, red-black
trees)

44

5/4/21

12

Red-black tree high-level

https://www.cs.usfca.edu/~galles/visualization/RedBl
ack.html

45

