

1

Binary Search Trees

BST - A binary tree where each each node has a key, and every node's key is:
\square Larger than all keys in its left subtree. (everything left is smaller)
Smaller than all keys in its right subtree. (everything right is larger)

3

Admin

Last day for "normal" mentor hours, Friday (5/7)

More on mentor hours next week

Operations

Search - Does the key exist in the tree

Insert - Insert the key into tree

Delete - Delete the key from the tree

4

Height of the tree
Most of the operations take time O(height)
We said trees built from random data have height
O(log n), which is asymptotically tight
Two problems:
a We can't always insure random data
\squareWhat happens when we delete nodes and insert others after building a tree?
Worst case height for binary search trees is $\mathrm{O}(\mathrm{n}):$:

5

2-3 trees

Anatomy of a 2-3 search tree
2-node: one key and two children (left and right)
\square everything in left is smaller than key

- everything right is greater than (or equal to) key

3-node: two keys $\left(k_{1}, k_{2}\right)$ and three children, left, middle and right ㅁ $\mathrm{k}_{1}<\mathrm{k}_{2}$
\square everything in left is less than k_{1}
everything in middle is between k_{1} and k_{2} (greater than or equal to k_{1} and less than k_{2})

- everything in right is greater than (or equal to) k_{2}

7

Balanced trees

Make sure that the trees remain balanced!

- Red-black trees
\square AVL trees
- 2-3 trees
- 2-3-4 trees
- B-trees
- ...

Height is guaranteed to be $\mathrm{O}(\log n)$

6

Search
How do we search for a key?

8

11

12

13

15

14

16

17

19

18

20

21

23

Insertion

If the leaf is a 2-node, just insert it directly

Insert(F)

22
Insertion
Like BST, insert always happens at a leaf
If the leaf is a 2-node, just insert it directly
If the leaf is a 3-node:
a We now have three values at this leaf
ם Send the middle value up a node
a Make new 2-nodes out of the smallest and largest

24

25

26

28

29

31

30

32

33

Insertion

If the leaf is a 3 -node:

- We now have three values at this leaf
- Send the middle value up a node
\square Make new 2-nodes out of the smallest and largest

Insert(I)

34

36

37

Insertion

If the leaf is a 2 -node, just insert it directly

If the leaf is a 3-node:
\square We now have three values at this leaf
\square Send the middle value up a node
\square Make new 2-nodes out of the smallest and largest
Only when the root is a 3 -node and we insert into a path that is all 3-nodes!

Effect: The tree can hold quite a few values before having to increase the height

Insertion

If the leaf is a 2 -node, just insert it directly

If the leaf is a 3 -node:

- We now have three values at this leaf
\square Send the middle value up a node
- Make new 2 -nodes out of the smallest and largest

When will the height of the tree change?

38

40

41

43

Running time

Worst case height: $\mathrm{O}(\log \mathrm{n})$

What does that mean?

42

2-3 search trees in practice

A pain to implement

Overhead can often make slower than standard BST

Other balanced trees exist that provide the same worst case guarantee, but are faster (e.g, red-black trees)

Red-black tree high-level
https://www.cs.usfca.edu/~galles/visualization/RedBI ack.html

45

