5/4/21

Admin

[
Last day for “normal” mentor hours, Friday (5/7)

More on mentor hours next week

BALANCED SEARCH TREES

David Kauchak
CS 62 — Spring 2021

1 2
Binary Search Trees Operations
| | |
BST — A binary tree where each each node has a key, and every node’s Search — Does the key exist in the tree
key is:

0 Larger than all keys in its left subtree. (everything left is smaller) Insert — Insert the key into tree

o Smaller than all keys in its right subtree. (everything right is larger)

Delete — Delete the key from the tree

5/4/21

Height of the tree

Most of the operations take time
O(height)

We said trees built from random data have height
O(log n), which is asymptotically tight

Two problems:
We can’t always insure random data

What happens when we delete nodes and insert others
after building a tree?

Worst case height for binary search trees is O(n) ®

Balanced trees

Make sure that the trees remain balanced!
Red-black trees
AVL trees
2-3 trees
2-3-4 trees
B-trees

Height is guaranteed to be O(log n)

2-node

3-node

2-3 trees .

null link
Anatomy of a 2-3 search tree
2-node: one key and two children (left and right)

everything in left is smaller than key

everything right is greater than (or equal to) key

3-node: two keys (ki, k,) and three children, left, middle and right

ki < ko

everything in left is less than k;

everything in middle is between k; and k3 (greater than or equal to k;

and less than kj)
everything in right is greater than (or equal to) k;

Search

How do we search for a key?

2-node

null link

Anatomy of a 2-3 search tree

5/4/21

Search Search
| |
Almost identical to BST search
Search(H)
Only difference: sometimes we have two keys
7
“nuldl link
Anatomy of a 2-3 search tree Which child?
9 10
Search Search
| |
Search(H) Search(H)
Which child?
11 12

5/4/21

Search Search
| |
Search(B) Search(B)
Which child?
Which child?
13 14
Search Search
| |
Search(B) Search(B)
Which child?
Not found!
15 16

5/4/21

Search

Insertion

Like BST, insert always happens at a leaf

If the leaf is a 2-node, just insert it directly

17 18
Insertion Insertion
If the leaf is a 2-node, just insert it directly If the leaf is a 2-node, just insert it directly
Insert(F) Insert(F)
Where should it go?
19 20

5/4/21

Insertion

If the leaf is a 2-node, just insert it directly

Insert(F)

Insertion

If the leaf is a 2-node, just insert it directly

Insert(F)

21

22

Insertion

If the leaf is a 2-node, just insert it directly

Insert(F)

Insertion
Like BST, insert always happens at a leaf
If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node
Make new 2-nodes out of the smallest and largest

23

24

5/4/21

Where should it go?

Insertion

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(T)

Insertion

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(T)

25

26

Insertion

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(T)

Insertion

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(T)

27

28

5/4/21

Insertion
[

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(l)

Where should it go?

Insertion
[

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(l)

29

30

Insertion
[

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(l)

Insertion
[

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(l)

31

32

5/4/21

Insertion

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(l)

What now?

Insertion

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(l)

Repeat!

33

34

Insertion

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(l)

Insertion

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(l)

35

36

5/4/21

Insertion
[

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Insert(l)

Insertion
[

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

When will the height of the tree change?

37

38

Insertion
[

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
We now have three values at this leaf
Send the middle value up a node

Make new 2-nodes out of the smallest and largest

Only when the root is a 3-node and we insert into
a path that is all 3-nodes!

Effect: The tree can hold quite a few values

before having to increase the height

Practice
[

Draw the 2-3 tree that results when you insert the keys:
EASY QUTIO Nin that order in an initially empty tree.

39

40

10

5/4/21

Practice Running time
|] |
Draw the 2-3 tree that results when you insert the keys: Worst case height: O(log n)
EASY QUTIO N in that order in an initially empty tree.
What does that mean2
41 42
Running time 2-3 search trees in practice
|] |
Worst case height: O(log n) A pain to implement
Insert, search and delete are all O(log n) Overhead can often make slower than standard BST
Other balanced trees exist that provide the same
worst case guarantee, but are faster (e.g, red-black
trees)
43 44

11

Red-black tree high-level

https:/ /www.cs.usfca.edu/~galles /visualization/RedBl
ack.html

45

5/4/21

12

