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BALANCED SEARCH TREES
David Kauchak
CS 62 – Spring 2021
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Admin

Last day for “normal” mentor hours, Friday (5/7)

More on mentor hours next week
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Binary Search Trees

BST – A binary tree where each each node has a key, and every node’s 
key is:

¨ Larger than all keys in its left subtree. (everything left is smaller)

¨ Smaller than all keys in its right subtree. (everything right is larger)
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Operations

Search – Does the key exist in the tree 

Insert – Insert the key into tree

Delete – Delete the key from the tree
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Height of the tree

Most of the operations take time 
O(height)

We said trees built from random data have height 
O(log n), which is asymptotically tight

Two problems:
¤ We can’t always insure random data
¤ What happens when we delete nodes and insert others 

after building a tree?

Worst case height for binary search trees is O(n) L
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Balanced trees

Make sure that the trees remain balanced!
¤ Red-black trees
¤ AVL trees
¤ 2-3 trees
¤ 2-3-4 trees
¤ B-trees
¤ …

Height is guaranteed to be O(log n)
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2-3 trees 

2-node: one key and two children (left and right)
¤ everything in left is smaller than key
¤ everything right is greater than (or equal to) key

3-node: two keys (k1, k2)  and three children, left, middle and right
¤ k1 < k2
¤ everything in left is less than k1
¤ everything in middle is between k1 and k2 (greater than or equal to k1

and less than k2)
¤ everything in right is greater than (or equal to) k2
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Search

How do we search for a key?
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Search

Almost identical to BST search

Only difference: sometimes we have two keys
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Search

M

Search(H)

Which child?
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Search

M

E  J

Search(H)

Which child?
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Search

M
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H

Search(H)
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Search

M

Search(B)

Which child?
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Search

M

E  J

Search(B)

Which child?
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Search

M

E  J

A  C

Search(B)

Which child?
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Search

M

E  J

A  C

Search(B)

Not found!
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Search

M

E  J

A  C H L S  XP

R
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Insertion

Like BST, insert always happens at a leaf

If the leaf is a 2-node, just insert it directly
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Insertion

If the leaf is a 2-node, just insert it directly
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A  C H L S  XP
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Insert(F)

Where should it go?
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Insertion

If the leaf is a 2-node, just insert it directly
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E  J

A  C H L S  XP

R

Insert(F)

20



5/4/21

6

Insertion

If the leaf is a 2-node, just insert it directly

M

E  J

A  C H L S  XP

R

Insert(F)
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Insertion

If the leaf is a 2-node, just insert it directly
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Insertion

If the leaf is a 2-node, just insert it directly

M

E  J

A  C F H L S  XP

R

Insert(F)
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Insertion

Like BST, insert always happens at a leaf

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest
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Insertion

M

E  J

A  C F H L S  XP

R

Insert(T)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

Where should it go?
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Insertion

M

E  J

A  C F H L S  XP

R

Insert(T)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest
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Insertion

M

E  J

A  C F H L S  T  XP

R

Insert(T)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest
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Insertion

M

E  J

A  C F H L S P

R  T

Insert(T)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

X

S  T  X

R
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Insertion

M

E  J

A  C F H L S P

R  T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

X

Where should it go?
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Insertion

M

E  J

A  C F H L S P

R  T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

X
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Insertion

M

E  J

A  C F H I L S P

R  T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

X
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Insertion

M

E H J

A  C F L S P

R  T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI
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Insertion

M

E H J

A  C F L S P

R  T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI

What now?
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Insertion

M

E H J

A  C F L S P

R  T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI

Repeat!
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Insertion

M

E H J

A  C F L S P

R  T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI

35

Insertion

H M

E J

A  C F L S P

R  T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI
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Insertion

H M

E 

A  C F L S P

R  T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

XI

J
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Insertion

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node

¤ Make new 2-nodes out of the smallest and largest

When will the height of the tree change?
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Insertion

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node

¤ Make new 2-nodes out of the smallest and largest

Only when the root is a 3-node and we insert into 
a path that is all 3-nodes!

Effect: The tree can hold quite a few values 
before having to increase the height
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Practice

Draw the 2-3 tree that results when you insert the keys:
E A S Y Q U T I O N in that order in an initially empty tree.
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Practice

Draw the 2-3 tree that results when you insert the keys:
E A S Y Q U T I O N in that order in an initially empty tree.
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Running time

Worst case height: O(log n)

What does that mean?

42

Running time

Worst case height: O(log n)

Insert, search and delete are all O(log n)
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2-3 search trees in practice

A pain to implement

Overhead can often make slower than standard BST

Other balanced trees exist that provide the same 
worst case guarantee, but are faster (e.g, red-black 
trees)
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Red-black tree high-level

https://www.cs.usfca.edu/~galles/visualization/RedBl
ack.html
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