
4/29/21

1

GRAPHS: SHORTEST PATHS
David Kauchak
CS 62 – Spring 2021

1

Admin

Last quiz!

Last assignment due next Friday (5/7)

Next week:
¤ Tuesday: balanced trees
¤ Wednesday: course feedback forms, ethics discussion,

work session
¤ Thursday: recap/review

2

Shortest paths

What is the shortest path from a to d?

A

B

C E

D

3

Shortest paths

A

B

C E

D

How can we find this?

4

4/29/21

2

Shortest paths

A

B

C E

D

BFS visits vertices in increasing distance!

5

BFS with distances

Look at ShortestPaths.bfsDistances in GraphExamples

https://github.com/pomonacs622021sp/LectureCode/tree/master/GraphExamples

6

Shortest paths

What is the shortest path from a to d?

A

B

C E

D

1

1

3

2

2
3

4

7

Shortest paths

We can still use BFS

A

B

C E

D

1

1

3

2

23

4

8

https://github.com/pomonacs622021sp/LectureCode/tree/master/GraphExamples

4/29/21

3

Shortest paths

We can still use BFS

A

B

C E

D

1

1

3

2

23

4

A

B

C E

D

9

Shortest paths

We can still use BFS

A

B

C E

D

10

Shortest paths

What is the problem?

A

B

C E

D

11

Shortest paths

Running time is dependent on the weights!

A

B

C4

1

2

A

B

C200

50

100

12

4/29/21

4

Shortest paths

A

B

C200

50

100

A

B

C

13

Shortest paths

A

B

C

14

Shortest paths

A

B

C

15

Shortest paths

A

B

C

Nothing will change as we expand the frontier
until we’ve gone out 100 levels

16

4/29/21

5

Key idea

Explore the vertices in order of increasing distance
from the starting vertex

Keep track of the distances to each vertex

If we find a better path, update that distance

17

Dijkstra’s high-level

Explore the vertices in order of increasing distance from the starting vertex

Use a priority queue to keep track of the shortest path found so far to a vertex

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v → adj)
if path v → adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

18

A

B

C E

D

1

1

3

3

21

4

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

19

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
¥

¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

20

4/29/21

6

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
¥

0

PQ

A 0
B ¥
C ¥
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

21

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
¥

0

PQ

B ¥
C ¥
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

22

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
¥

0

PQ

B ¥
C ¥
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

23

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
1

0

PQ

C 1
B ¥
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

24

4/29/21

7

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
1

0

PQ

C 1
B ¥
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

25

A

B

C E

D

1

1

3

3

21

4

3 ¥

¥
1

0

PQ

C 1
B 3
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

26

A

B

C E

D

1

1

3

3

21

4

3 ¥

¥
1

0

PQ

C 1
B 3
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

27

3

A

B

C E

D

1

1

3

21

4

3 ¥

¥
1

0

PQ

B 3
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

28

4/29/21

8

3

A

B

C E

D

1

1

3

21

4

3 ¥

¥
1

0

PQ

B 3
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

29

3

A

B

C E

D

1

1

3

21

4

3 ¥

¥
1

0

PQ

B 3
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

30

3

A

B

C E

D

1

1

3

21

4

2 ¥

¥
1

0

PQ

B 2
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

31

3

A

B

C E

D

1

1

3

21

4

2 ¥

¥
1

0

PQ

B 2
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

32

4/29/21

9

3

A

B

C E

D

1

1

3

21

4

2 ¥

5
1

0

PQ

B 2
E 5
D ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

33

3

A

B

C E

D

1

1

3

21

4

2 ¥

5
1

0

PQ

B 2
E 5
D ¥

Frontier?

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

34

3

A

B

C E

D

1

1

3

21

4

2 ¥

5
1

0

PQ

B 2
E 5
D ¥

All nodes reachable
from starting node
within a given distance

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

35

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

PQ

E 3
D 5

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

36

4/29/21

10

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

PQ

D 5

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

37

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

PQ

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

38

A

B

C E

D

1

1
1

2 5

3
1

0

PQ

3

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v→ adj)
if path v→ adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

39

Dijkstra’s algorithm

40

4/29/21

11

Dijkstra’s algorithm

Dijkstra’s BFS

41

Dijkstra example

Look at ShortestPaths.dijkstra in GraphExamples

https://github.com/pomonacs622021sp/LectureCode/tree/master/GraphExamples

42

Why does it work?

When a vertex is removed from the priority queue, distTo[v]
is the actual shortest distance from s to v

¤ The only time a vertex gets removed is when the distance
from s to that vertex is smaller than the distance to any
remaining vertex

¤ Therefore, there cannot be any other path that hasn’t been
visited already that would result in a shorter path

43

Why does it work?

When a vertex is removed from the priority queue, distTo[v]
is the actual shortest distance from s to v

¤ The only time a vertex gets removed is when the distance
from s to that vertex is smaller than the distance to any
remaining vertex

¤ Therefore, there cannot be any other path that hasn’t been
visited already that would result in a shorter path

Does this make any assumptions?

44

https://github.com/pomonacs622021sp/LectureCode/tree/master/GraphExamples

4/29/21

12

What about this graph?

A

B

C E

D

1

-3

3

3

2
1

4

What’s the shortest path from A to C?
What would Dijkstra’s do?

45

What about this graph?

A

B

C E

D

1

-3

3

3

21

4

Dijkstra’s only works on graphs with positive edge weights

46

Why does it work?

When a vertex is removed from the priority queue, distTo[v]
is the actual shortest distance from s to v

¤ The only time a vertex gets removed is when the distance
from s to that vertex is smaller than the distance to any
remaining vertex

¤ Therefore, there cannot be any other path that hasn’t been
visited already that would result in a shorter path

Assuming no negative edge weights!

47

Relaxing an edge

This update is called “relaxing” an edge

We can apply this to an edge as many times as we want

This idea is used in other shortest paths algorithms (e.g., Bellman-Ford)

48

4/29/21

13

Dijkstra in practice
don’t insert everything into pq

only insert starting vertex

insert when we discover a vertex

49

Run-time

V calls

E calls

50

Running time?

Depends on the heap implementation

V * delMin E * decreaseKey Total

Array O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

O(|E| log |V|)

51

Running time?

Depends on the heap implementation

V * delMin E * decreaseKey Total

Array O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

Fib heap O(|V| log |V|) O(|E|) O(|V| log |V| + |E|)

O(|E| log |V|)

52

4/29/21

14

Shortest paths

Dijkstra’s: single source shortest paths for positive
edge weight graphs

What is single source?

53

Shortest paths

Dijkstra’s: single source shortest paths for positive
edge weight graphs

Many other variants:
- graphs with negative edges
- all pairs shortest paths
- …

54

