

1

Shortest paths

What is the shortest path from a to d?

3

Admin

Last quiz!

Last assignment due next Friday (5/7)

Next week:
\square Tuesday: balanced trees

- Wednesday: course feedback forms, ethics discussion, work session
- Thursday: recap/review

2

Shortest paths

How can we find this?

4

13

15

14

16

Key idea
Explore the vertices in order of increasing distance
from the starting vertex
Keep track of the distances to each vertex
If we find a better path, update that distance

17

```
Initialize: distance to start = 0 and all others infinity
repeat
    get vertex v with shortest distance
    for each vertex, adj, adjacent to v (edge exists v }->\mathrm{ adj)
        if path v}->\mathrm{ adj is shortest then best path for adj so far
        update the distance for adj
        update the priority queue
```


Dijkstra's high-level

Explore the vertices in order of increasing distance from the starting vertex

Use a priority queue to keep track of the shortest path found so far to a vertex

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adj, adjacent to \vee (edge exists $\vee \rightarrow$ adj)
if path $v \rightarrow$ adj is shortest then best path for adj so far update the distance for adj update the priority queve

18

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adj, adjacent to v (edge exists $v \rightarrow$ adj)
if path $v \rightarrow$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

20

21

23

22

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adj, adjacent to v (edge exists $v \rightarrow$ adj)
if path $v \rightarrow$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

PQ
C 1
B ∞
D ∞
$E \infty$

25

27

26

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adj, adjacent to v (edge exists $v \rightarrow$ adj)
if path $v \rightarrow$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

B 3
D ∞
$E \infty$

28

29

31

30

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adj, adjacent to v (edge exists $v \rightarrow$ adj)
if path $v \rightarrow$ adj is shortest then best path for adj so far update the distance for adj update the priority queue \qquad

B 2
D ∞
$E \infty$

33

35

34

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adj, adjacent to v (edge exists $v \rightarrow$ adj)
if path $v \rightarrow$ adj is shortest then best path for adj so far update the distance for adj update the priority queue
PQ
E 3
D 5

36

37

39

38

Dijkstra's algorithm

```
#ublic static void dijkstra(WeightedGraph g, int start) {
    public static void dijkstra(WeightedGraph g, int start) {
    int[] edgeTo = new int[g.numberOfVertices()];
    for(int v=0; v< g.number0fvertices(); v++ ) {
        distrort(v, Double.POSITIVE_INFINITY)
    }
    distTo[start] = 0.0; 
    // relax vertices in order of distance from s
        int v = pq.delmin();
            for (WeightedEdge e : g.adj(v)) {
            nt adj = e.tol
            if( distTo[v] + e.weight() < distTo[adj]) {
                istTolv + distTo[v] + e.weight()
                pq.decreaseKey(adj, distTo[adj]);
            } }
        }
```

40

41

Why does it work?

When a vertex is removed from the priority queve, distTo[v] is the actual shortest distance from s to v

The only time a vertex gets removed is when the distance from s to that vertex is smaller than the distance to any remaining vertex
\square Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

Dijkstra example

Look at ShortestPaths.dijkstra in GraphExamples
https://aithub.com/pomonacs622021sp/LectureCode/tree/master/GraphExamples

42

44

45

Why does it work?

When a vertex is removed from the priority queve, distTo[v] is the actual shortest distance from s to v

- The only time a vertex gets removed is when the distance from s to that vertex is smaller than the distance to any remaining vertex
- Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

Assuming no negative edge weights!

What about this graph?

Dijkstra's only works on graphs with positive edge weights

46

```
public static void fasterDijkstra(WeightedGraph g, int start) {
    IndexMinPQ<Double> pq = new IndexMinPQ<Double>(g.numberOfVertices());
    int[] edgeTo = new int[g.numberOfVertices()];
    double[] distTo = new double[g.numberOfVertices()];
    for( int v = 0; v < g.numberOfVertices(); v++ ) {
        distTo [v] = Double.POSITIVE_INFINITY; don't insert everything into pq
    }
    distTo[start] = 0.0;
    pq.insert(start, 0.0); only insert starting vertex
    while( !pq.isEmpty() ) {
        int V = pq.delMin();
            for (WeightedEdge e : g.adj(v)) {
                int adj = e.to();
            if( distTo[v] + e.weight() < distTo[adj] ) {
                distTo[adj] = distTo[v] + e.weight();
                edgeTo[adj] = v;
                    if( pq.contains(adj) ),
                            pq.decreaseKey(adj, distTo[adj]);
                        } else {.insert(adj, distTo[adj]); insert when we discover a vertex
                }
            }
    }
```

49

Running time?			
Depends on the heap implementation			
	V * delmin	E * decreaseKey	Total
Array	$\mathrm{O}\left(\left.\mathrm{V}\right\|^{2}\right)$	O(EE)	$\mathrm{O}\left(\mathrm{V} \mathrm{l}^{2}\right)$
Bin heap	$\mathrm{O}(\mathrm{IV} \mid \log \mathrm{IV})$	$\mathrm{O}(\mathrm{EE}\|\log \| \mathrm{V} \mid)$	$\mathrm{O}(\|\mathrm{IV}+\|\mathrm{E}\|) \log \|\mathrm{V}\|)$ $\mathrm{O}(\|\underline{\mid}\| \log \|\mathrm{V}\|)$

51

Run-time

```
public static void dijkstra(WeightedGraph g, int start) {
    IndexMinPO<DOuble> pq = new IndexMinPO<Double>(a, numberOfvertices())
    int[] edgeTo = new int[g.numberofvertices()];
    for(fint v 0; v<< (a)
        in v=0; v < q.numberofvertices(;;
        distTo[v] = Double.POSITIVE=INFINITY;
    }
    listTo[start] = 0.0; ; 0.0); \ V calls
    // relax vertices in order of distance froms
        int v= pq.delMin();
            for (WeightedEdge e : g.adj(v)) {
                if( distTo[v] + e.weight() < distTo[adj] ) { E calls
                (\begin{array}{l}{\mathrm{ distTo[v] + e.weight() < distTo[adj] ),}}\\{\mathrm{ distTo[adj] = distTo[v] + e.weight(); }}\end{array}}
                    calls
                    distTo[adj] = d
                pq.decreaseKey(adj, distToraj),
            }
    } }
```

\}
50

Running time?				
Depends on the heap implementation				
	V * delmin	E * decreaseKey	Total	
Array	$\mathrm{O}\left(\left.\mathrm{IV}\right\|^{2}\right)$	$\mathrm{O}(\mathrm{EE} \mid)$	$\mathrm{O}\left(\left.\mathrm{IV}\right\|^{2}\right)$	
Bin heap	$\mathrm{O}(\|\mathrm{V}\| \log \|\mathrm{V}\|)$	$\mathrm{O}(\|\underline{\text { E }} \log \| \mathrm{V} \mid)$	$\begin{aligned} & \mathrm{O}((\|\mathrm{~V}\|+\|\mathrm{E}\|) \log \|\mathrm{V}\|) \\ & \mathrm{O}(\|\mathrm{E}\| \log \|\mathrm{V}\|) \end{aligned}$	
Fib heap	$\mathrm{O}(\mathrm{V}\|\log \| \mathrm{V} \mid)$	O(\|E)	$\mathrm{O}(\mathrm{V}\|\log \| \mathrm{V}\|+\|\mathrm{E}\|)$

53

Shortest paths
Dijkstra's: single source shortest paths for positive edge weight graphs Many other variants: - graphs with negative edges all pairs shortest paths
...
54

