

49

51

Representing graphs

Adjacency list - Each vertex $u \in V$ contains an adjacency list of the set of vertices v such that there exists an edge $(u, v) \in E$

$$
\begin{array}{ll}
\hline \mathrm{A}: & \mathrm{B} \\
\mathrm{~B}: & \mathrm{D} \\
\mathrm{~A} & \mathrm{D} \\
\mathrm{C}: & \mathrm{D} \\
\mathrm{D}: & \mathrm{A} \\
\mathrm{E}: & \mathrm{B} \\
\mathrm{D} & \mathrm{C} \\
\end{array}
$$

50

Representing graphs

Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:
$a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}$
ABCDE

A 0101010
B 100010
C 0001010
D $\begin{array}{llllll}1 & 1 & 1 & 0 & 1\end{array}$
E 00010

53

55

Representing graphs

Adjacency matrix - A $|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

ABCDE

A	0	1	0	1	0

$\begin{array}{llllll}\text { B } & 1 & 0 & 0 & 1 & 0 \\ \text { C } & 0 & 0 & 0 & 1 & 0\end{array}$
D $111 \begin{array}{llll}1 & 0 & 1\end{array}$
E 00010

54

Representing graphs

Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:
$a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}$

56

57

Adjacency list vs. adjacency matrix	
Adjacency list	Adjacency matrix
Sparse graphs (e.g. web) Space efficient Must traverse the adjacency list to discover is an edge exists	Dense graphs Constant time lookup to discover if an edge exists Simple to implement For non-weighted graphs,

59

Adjacency list vs. adjacency matrix	
Adjacency list	Adjacency matrix
Pros/Cons?	

60

61

