CS 62 - Spring 2021CS 62 - Spring 2021

1

Graphs

A mathematical model consisting of a set of nodes/vertices and edges

3

Admin

Midterm 2 next Wednesday

$\square 2$ hours starting at the beginning of lab (email me if that time doesn't work well)
\square Material: from stack \& queues up through binary search trees
\square May bring two pages of notes
\square Sample problems posted
\square Review on Tuesday

2

Graphs

A graph is a set of vertices V and a set of edges $(u, v) \in E$ where $u, v \in V$

4

5

Graphs

How do graphs differ?
What are graph characteristics we might care about?

7

When do we see graphs in real life problems?

Transportation networks (flights, roads, etc.)

Communication networks

Web

Social networks

Circuit design

Bayesian networks

6

8

9

11

10

12

13

15

Terminology

The degree of a vertex is the number of edges incident to it

$$
\text { What is the degree of } A
$$

$$
\text { What is the degree of } D \text { ? }
$$

14

16

17

19

Terminology

Path - A path is a sequence of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$ and no edge is repeated

Terminology

Path - A path is a sequence of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$ and no edge is repeated
$\{C, D\}$

20

21

23

24

25

Path - A path is a sequence of vertices $p_{1,}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$ and no edge is repeated

Cycle - A path where the first and last node are the same

Not a cycle!

27

26

28

29

31

30

32

33

Terminology

Strongly connected (directed graphs) Every two vertices are reachable by a path

Is this graph
strongly connected?

35

34

36

37

Terminology

Strongly connected (directed graphs) Every two vertices are reachable by a path

Is this graph strongly connected?

38

40

41

43

44

45

46

Graph questions?

Does it have a cycle?

Is it connected? Strongly connected?

Is there a path from a to b ?

What is the shortest path from a to b? In number of edges? In sum of the edge weights?

48

