
4/15/21

1

BINARY SEARCH TREES
David Kauchak
CS 62 – Spring 2021

1

Administrative

Autocomplete

Lab tomorrow: Q&A + work session (make some 
progress on assignment!)

Midterm 2 next week

Pre-pre enrollment

2

Binary Search Trees

BST – A binary tree where each each node has a value, and every 
node’s value is:
¨ Greater than all values in its left subtree. (everything left is smaller)
¨ Less than or equal to all values in its right subtree. (everything right is 

larger)

12

8

5 9 20

14

3

Operations

Search – Does the key exist in the tree 

Insert – Insert the key into tree

Delete – Delete the key from the tree

4



4/15/21

2

Finding an element

Search(9)
12

8

5 9 20

14

How do we find an element?

5

Finding an element

Search(9)
12

8

5 9 20

14

6

Finding an element

12

8

5 9 20

14

Search(9)

7

Finding an element

12

8

5 9 20

14

Search(9)

8



4/15/21

3

Finding an element

12

8

5 9 20

14

Search(9)

9

Finding an element

12

8

5 9 20

14

Search(13)

10

Finding an element

12

8

5 9 20

14

Search(13)

11

Finding an element

12

8

5 9 20

14

Search(13)

12



4/15/21

4

Finding an element

12

8

5 9 20

14

?

Search(13)

13

Finding an element

14

Finding an element

15

Finding an element

12

8

5 9 20

14

Search(9)

What is the worst case running time of search?

16



4/15/21

5

Finding an element

12

8

5 9 20

14

Search(9)

Worst case, have to search to the lowest leaf
O(height)

17

Inserting

Insert(17) 12

8

5 9 20

14

How do we insert an element?

18

Inserting

Insert(17) 12

8

5 9 20

14

19

Inserting

Insert(17) 12

8

5 9 20

14

20



4/15/21

6

Inserting

Insert(17) 12

8

5 9 20

14

17

21

Inserting

22

Inserting

23

Inserting

Insert(17) 12

8

5 9 20

14

17

What is the worst case running time of insert?

24



4/15/21

7

Inserting

Insert(17) 12

8

5 9 20

14

17

Worst case, have to search to the lowest leaf
O(height)

25

Inserting duplicate

Insert(14) 12

8

5 9 20

14

26

Visiting all nodes

In sorted order
12

8

5 9 20

14

27

Visiting all nodes

In sorted order
12

8

5 9 20

14

5

28



4/15/21

8

Visiting all nodes

12

8

5 9 20

14

5, 8

29

Visiting all nodes

12

8

5 9 20

14

5, 8, 9

30

Visiting all nodes

12

8

5 9 20

14

5, 8, 9, 12

31

Visiting all nodes

What’s happening?

12

8

5 9 20

14

5, 8, 9, 12

32



4/15/21

9

Visiting all nodes

12

8

5 9 20

14

5, 8, 9, 12, 14

33

Visiting all nodes

12

8

5 9 20

14

5, 8, 9, 12, 14, 20

34

Min/Max?

12

8

5 9 20

14

35

Successor and predecessor

12

8

5 9 20

14

13

Predecessor(12)? 9

36



4/15/21

10

Successor and predecessor

12

8

5 9 20

14

13

Predecessor in general? largest node of all those 
smaller than this node

rightmost element of 
the left subtree

37

Successor

12

8

5 9 20

14

13

Successor(12)? 13

38

Successor

12

8

5 9 20

14

13

Successor in general? smallest node of all those 
larger than this node

leftmost element of the 
right subtree

39

Successor

12

8

20

14

13

What if the node 
doesn’t have a right 
subtree?

smallest node of all those 
larger than this node

leftmost element of the 
right subtree

95

40



4/15/21

11

Successor

12

8

5 20

14

13

What if the node 
doesn’t have a right 
subtree?

node is the largest

the successor is the node 
that has x as a 
predecessor

9

41

Successor

12

8

5 20

14

13

successor is the node 
that has x as a 
predecessor

9

42

Successor

12

8

5 20

14

13

successor is the node 
that has x as a 
predecessor

9

43

Successor

12

8

5 20

14

13

successor is the node 
that has x as a 
predecessor

9

44



4/15/21

12

Successor

12

8

5 20

14

13

successor is the node 
that has x as a 
predecessor

9

keep going up until 
we’re no longer a 
right child

45

Deletion

12

8

5 9 20

14

13

Three cases!

46

Deletion: case 1

No children

Just delete the node
12

8

5 9 20

14

13

17

47

Deletion: case 1

12

8

5 20

14

13

17

No children

Just delete the node

48



4/15/21

13

Deletion: case 2

One child

Splice out the node
12

8

5 20

14

13

17

49

Deletion: case 2

12

5

20

14

13

17

One child

Splice out the node

50

Deletion: case 3

Two children

Replace x with the smallest value of the right subtree

12

5

20

14

13

17

How does this maintain the 
search tree property?

51

Deletion: case 3

Two children

Replace x with the smallest value of the right subtree

12

5

20

14

13

17

- Larger than everything 
to the left

- Smaller than everything 
to the right

52



4/15/21

14

Deletion: case 3

Two children

Replace x with the smallest value of the right subtree

12

5

20

14

13

17

12

5

20

17

13

53

Deletion

Delete 21

54

Deletion

Min of the right subtree

55

Deletion

Replace the value: involves a case 2 deletion

56



4/15/21

15

Deletion

Replace the value: involves a case 2 deletion

57

Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

Why?

58

Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

Why?

12

min The minimum cannot have a left child

59

Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

Why?

12

min The minimum cannot have a left child

60



4/15/21

16

Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

12

min

What is the worst case running time of delete?

61

Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

12

min

Case 1 and Case 2: O(1)
Case 3: Find min and do a case 1 or case 2 delete
O(height)

62

Height of the tree

Most of the operations take time 
O(height)

Trees built from random data have height O(log n)

Two problems:
¤ We can’t always insure random data

¤ What happens when we delete nodes and insert others 
after building a tree?

Worst case height for binary search trees is O(n) L

67

Why BSTs?

Hashtables are fast at search/insert/delete, O(1)

Why BSTs?

68



4/15/21

17

Why BSTs?

Hashtables are fast at search/insert/delete, O(1)

Min/Max

Successor/predecessor

Inorder traversal

order statistics (5th largest element, etc.)

69

Operations

Search – Does the key exist in the tree 

Insert – Insert the key into tree

Delete – Delete the key from the tree

70


