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BINARY SEARCH TREES
David Kauchak
CS 62 – Spring 2021
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Administrative

Autocomplete

Lab tomorrow: Q&A + work session (make some 
progress on assignment!)

Midterm 2 next week

Pre-pre enrollment
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Binary Search Trees

BST – A binary tree where each each node has a value, and every 
node’s value is:
¨ Greater than all values in its left subtree. (everything left is smaller)
¨ Less than or equal to all values in its right subtree. (everything right is 

larger)
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Operations

Search – Does the key exist in the tree 

Insert – Insert the key into tree

Delete – Delete the key from the tree
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Finding an element

Search(9)
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How do we find an element?
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Finding an element
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Finding an element

12

8

5 9 20

14

Search(9)

7

Finding an element
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Finding an element
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Finding an element
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Search(13)
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Finding an element
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Finding an element
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Finding an element
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Search(13)
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Finding an element

14

Finding an element
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Finding an element
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Search(9)

What is the worst case running time of search?
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Finding an element
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Search(9)

Worst case, have to search to the lowest leaf
O(height)
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Inserting

Insert(17) 12
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How do we insert an element?
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Inserting

Insert(17) 12
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Inserting
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Inserting

Insert(17) 12
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Inserting
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Inserting
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Inserting
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What is the worst case running time of insert?
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Inserting

Insert(17) 12
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Worst case, have to search to the lowest leaf
O(height)
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Inserting duplicate

Insert(14) 12
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Visiting all nodes

In sorted order
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Visiting all nodes

In sorted order
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Visiting all nodes
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Visiting all nodes
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Visiting all nodes
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Visiting all nodes

What’s happening?
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Visiting all nodes
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5, 8, 9, 12, 14
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Visiting all nodes
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5, 8, 9, 12, 14, 20
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Min/Max?
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Successor and predecessor
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Predecessor(12)? 9
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Successor and predecessor
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Predecessor in general? largest node of all those 
smaller than this node

rightmost element of 
the left subtree
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Successor
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Successor(12)? 13
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Successor
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Successor in general? smallest node of all those 
larger than this node

leftmost element of the 
right subtree
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Successor
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What if the node 
doesn’t have a right 
subtree?

smallest node of all those 
larger than this node

leftmost element of the 
right subtree

95
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Successor
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What if the node 
doesn’t have a right 
subtree?

node is the largest

the successor is the node 
that has x as a 
predecessor
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Successor
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successor is the node 
that has x as a 
predecessor
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Successor
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successor is the node 
that has x as a 
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Successor
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Successor
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successor is the node 
that has x as a 
predecessor

9

keep going up until 
we’re no longer a 
right child
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Deletion
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Three cases!
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Deletion: case 1

No children

Just delete the node
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Deletion: case 1
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No children

Just delete the node
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Deletion: case 2

One child

Splice out the node
12

8

5 20

14

13

17

49

Deletion: case 2
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One child

Splice out the node
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Deletion: case 3

Two children

Replace x with the smallest value of the right subtree
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How does this maintain the 
search tree property?
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Deletion: case 3

Two children

Replace x with the smallest value of the right subtree
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- Larger than everything 
to the left

- Smaller than everything 
to the right
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Deletion: case 3

Two children

Replace x with the smallest value of the right subtree
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Deletion

Delete 21
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Deletion

Min of the right subtree
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Deletion

Replace the value: involves a case 2 deletion
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Deletion

Replace the value: involves a case 2 deletion
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Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

Why?
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Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

Why?

12

min The minimum cannot have a left child
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Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

Why?
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min The minimum cannot have a left child
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Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

12

min

What is the worst case running time of delete?
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Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

12

min

Case 1 and Case 2: O(1)
Case 3: Find min and do a case 1 or case 2 delete
O(height)
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Height of the tree

Most of the operations take time 
O(height)

Trees built from random data have height O(log n)

Two problems:
¤ We can’t always insure random data

¤ What happens when we delete nodes and insert others 
after building a tree?

Worst case height for binary search trees is O(n) L
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Why BSTs?

Hashtables are fast at search/insert/delete, O(1)

Why BSTs?
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Why BSTs?

Hashtables are fast at search/insert/delete, O(1)

Min/Max

Successor/predecessor

Inorder traversal

order statistics (5th largest element, etc.)
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Operations

Search – Does the key exist in the tree 

Insert – Insert the key into tree

Delete – Delete the key from the tree
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