
4/9/21

1

PRIORITY QUEUES
David Kauchak
CS 62 – Spring 2021

1

Admin

Pre-pre enrollment
¤ thanks all of you that are not potential CS majors for

your patience!

Autocomplete assignment

2

Binary heap

A binary tree where the value of a parent is greater
than or equal to the value of its children

Additional restriction: the tree must be complete!

Max heap vs. min heap

3

Binary heap - references

16

14 10

8

2 4 1

7 9 3

parent ≥ child

complete tree

all nodes in
a heap are
themselves
heaps

4

4/9/21

2

Binary heap - array

5

Binary heap - array

16

14 10

8

2 4 1

7 9 3

- 16 14 10 8 7 9 3 2 4 1

0 1 2 3 4 5 6 7 8 9 10

6

What are heaps good for?

16

14 10

8

2 4 1

7 9 3

7

ExtractMax

16

14 10

8

2 4 1

7 9 3

Return and remove the largest element in the set. The rest of
the data should stay as a heap

8

4/9/21

3

ExtractMax

14 10

8

2 4 1

7 9 3

?

Remove the root

9

ExtractMax

14 10

8

2 4

1

7 9 3

Remove the last node (rightmost leaf on the last level) and put
it at the root

10

Sink

14 10

8

2 4

1

7 9 3

Fix a heap where the left/right are heaps, but the
parent/child ordering might be violated at the parent node

11

1 10

8

2 4

14

7 9 3

Swap with largest child

Sink

Fix a heap where the left/right are heaps, but the
parent/child ordering might be violated at the parent node

12

4/9/21

4

8 10

1

2 4

14

7 9 3

Swap with largest child

Sink

Fix a heap where the left/right are heaps, but the
parent/child ordering might be violated at the parent node

13

8 10

4

2 1

14

7 9 3Swap with
largest child

Sink

Fix a heap where the left/right are heaps, but the
parent/child ordering might be violated at the parent node

14

10

9 4

8

2 4

7 1 2

- At a leaf
- if the node is larger than the two
children

Sink: when are we done?

Fix a heap where the left/right are heaps, but the
parent/child ordering might be violated at the parent node

15

sink/heapify/demote

16

4/9/21

5

sink runtime

What is the worst case runtime?

17

sink runtime

O(height of tree) What is the worst case runtime?

18

sink runtime

O(log n) What is the worst case runtime?

19

ExtractMax

- largest value is at the root (index 1)
- move the last value to the root
- remove the last item
- call sink on the root
- return the largest value

20

4/9/21

6

ExtractMax

What is the worst case runtime?

21

ExtractMax

O(log n) What is the worst case runtime?

22

Insert

16

14 10

8

2 4 1

7 9 3

15

How do we insert a value into a heap?

23

Insert

Insert the value at the end of the array (or as the
rightmost leaf)

16

14 10

8

2 4 1

7 9 3

15

24

4/9/21

7

Insert

Swap the value up until it’s in the right place

16

14 10

8

2 4 1

7 9 3

15

swim value up

25

Insert

Swap the value up until it’s in the right place

16

14 10

8

2 4 1

15 9 3

7

swim value up

26

Insert

Swap the value up until it’s in the right place

16

14 10

8

2 4 1

15 9 3

7

swim value up

27

Insert

Swap the value up until it’s in the right place

16

15 10

8

2 4 1

14 9 3

7

swim value up

28

4/9/21

8

Insert

Swap the value up until it’s in the right place

16

15 10

8

2 4 1

14 9 3

7

swim value up

29

Insert

Swap the value up until it’s in the right place

16

15 10

8

2 4 1

14 9 3

7

swim value up
When do we stop?

30

Insert

Swap the value up until it’s in the right place

16

15 10

8

2 4 1

14 9 3

7

swim value up
When do we stop?

Less than our parent
or we’re the root

31

swim/percolate up

32

4/9/21

9

swim/percolate up

What’s the worst case runtime?

33

swim/percolate up

What’s the worst case runtime? O(height of tree) = O(log n)

34

insert

35

insert

What’s the worst case runtime?

36

4/9/21

10

insert

What’s the worst case runtime? O(log n)

37

Heaps summarized

Very good at extracting min/max (depending on
heap ordering)

best worst average

max O(1) O(1) O(1)
extractMax O(1) O(log n) O(log n)

insert O(1) O(log n) O(log n)
change node O(1) O(log n) O(log n)

38

Heapsort

best worst average

max O(1) O(1) O(1)
extractMax O(1) O(log n) O(log n)
insert O(1) O(log n) O(log n)
change node O(1) O(log n) O(log n)

Could we sort data with a heap?

What would be the runtime (best, average,
worst)?

39

Heapsort

Build a heap out of the data (e.g., insert n items into
heap)

Call extractMin n times and add to answer

40

4/9/21

11

Heapsort runtime

Build a heap out of the data (e.g., insert n items into
heap)

Call extractMin n times and add to answer

Best case?

Worst case?

Average case?

41

Heapsort runtime

Best case?

Worst case?

Average case?

best worst average

max O(1) O(1) O(1)
extractMax O(1) O(log n) O(log n)
insert O(1) O(log n) O(log n)
change node O(1) O(log n) O(log n)

O(n) – when all items have the same value

O(n log n)

O(n log n)

42

Heapsort

Build a heap out of the data (e.g., insert n items into
heap)

Call extractMin n times and add to answer

Stable?

In-place?

No.

Not this implementation, but can be done without
too much trouble

43

Sorting summarized

in-place? stable? Best Average Worst Notes

Selection X O(n2) O(n2) O(n2) n swaps

Insertion X X O(n) O(n2) O(n2) use for
partially
ordered

Merge X O(n log n) O(n log n) O(n log n) guaranteed,
stable

Quick X O(n log n) O(n log n) O(n2) fastest in
practice

Heap X O(n) O(n log n) O(n log n) guaranteed, in-
place

44

4/9/21

12

Priority Queues

Queues work well for keeping track of sequential
ordering when everything is equivalent (e.g., waiting
in line to get lunch!)

Some queues everything is not equivalent (e.g., ER
waiting room)

Priority queues support add/remove orderd by a
weight/priority

45

Priority Queues

Applications?

46

Priority Queues

Applications?
¨ process scheduling (e.g., ‘top’ command)
¨ network traffic scheduling
¨ Many algorithms

¤ Search algorithms (A*)
¤ Shortest paths algorithms (Dijsktra’s)
¤ Minimum spanning trees (Prim’s)
¤ Huffman codes

47

Priority queue interface

48

4/9/21

13

Priority queue

two key methods:
- add
- extractMin (highest priority)

How can we do this?

See how many options you can come up with that
have *different* runtimes for operations!

49

Option 1: unordered ArrayList

add:

extractMin:

50

Option 1: unordered ArrayList

add: add to the end of the ArrayList

extractMin: search for the smallest, return and remove
it

Worst case running times?

51

Option 1: unordered ArrayList

add: add to the end of the ArrayList

O(1) amortized

extractMin: search for the smallest, return and remove it
O(n)

Worst case running times?

52

4/9/21

14

Option 1b: unordered LinkedList

add: add to the end of the linked list

extractMin: search for the smallest, return and remove
it

Worst case running times?

53

Option 1b: unordered LinkedList

add: add to the end of the linked list

O(1)

extractMin: search for the smallest, return and remove it
O(n)

Worst case running times?

54

Option 1b: unordered LinkedList

55

Option 2: sorted order linked list

add:

extractMin:

56

4/9/21

15

Option 2: sorted order linked list

add: search for the correct location and insert

extractMin: remove and return the first thing from the
list

Worst case running times?

57

Option 2: sorted order linked list

add: search for the correct location and insert
O(n)

extractMin: remove and return the first thing from the
list
O(1)

Worst case running times?

58

Option 3: heap

add/insert

extractMin

Worst case running times?

59

Option 3: heap

add/insert
O(log n)

extractMin
O(log n)

Worst case running times?

60

4/9/21

16

Priority queues summarized

add extractMin

unordered linked list O(1) O(n)
sorted linked list O(n) O(1)
heap O(log n) O(log n)

Different scenarios may benefit from different
implementations

Priority queue ≠ heap

61

