
3/30/21

1

COMPARATORS +
ITERATORS
David Kauchak
CS 62 – Spring 2021

1

Admin

Compression assignment

2

Partition

3

lessThanIndex

… 5 1 2 7 8 4 3 6 …

start end

i

≤ pivot > pivot unprocessed

4

3/30/21

2

¨ vals[end] is called the pivot
¨ Partitions the elements nums[start…end-1] in to two sets, those ≤

pivot and those > pivot
¨ Operates in place

¨ Final result:

nums

start pivot end

≤ pivot > pivot

5

Partition running time?

O(n)

6

Quicksort

7

8 5 1 3 6 2 7 4

Quicksort

8

3/30/21

3

8 5 1 3 6 2 7 4

Quicksort

9

1 3 2 4 6 8 7 5

Quicksort

10

1 3 2 4 6 8 7 5

Quicksort

11

1 3 2 4 6 8 7 5

Quicksort

12

3/30/21

4

1 2 3 4 6 8 7 5

Quicksort

13

1 2 3 4 6 8 7 5

Quicksort

14

1 2 3 4 6 8 7 5

Quicksort

15

1 2 3 4 6 8 7 5

Quicksort

16

3/30/21

5

1 2 3 4 6 8 7 5

Quicksort

17

1 2 3 4 5 8 7 6

What happens here?

Quicksort

18

1 2 3 4 5 8 7 6

Quicksort

19

1 2 3 4 5 8 7 6

Quicksort

20

3/30/21

6

1 2 3 4 5 6 7 8

Quicksort

21

1 2 3 4 5 6 7 8

Quicksort

22

Running time of Quicksort?

Worst case?

Each call to Partition splits the array into an empty array and n-1
array

23

Quicksort: Worst case
running time

When does this happen?
¤ sorted
¤ reverse sorted
¤ near sorted/reverse sorted

n-1 + n-2 + n-3 + … + 1 = O(n2)

24

3/30/21

7

Quicksort best case?

Each call to Partition splits the array into two equal parts

…
How much work is done at each “level”, i.e.
running time of a level?

O(n)

25

Quicksort best case?

Each call to Partition splits the array into two equal parts

…
How many levels are there?

Similar to mergesort, each call to Partition will throw away half the
data until we’re down to one element: log2 n levels

26

Quicksort best case?

Each call to Partition splits the array into two equal parts

…
Overall runtime?

O(n log n)

27

Quicksort Average case?
Two intuitions

¤ As long as the Partition procedure always splits the array into some
constant ratio between the left and the right, say L-to-R, e.g. 9-to-
1, then we maintain O(n log n)

¤ As long as we only have a constant number of “bad” partitions
intermixed with a “good partition” then we maintain O(n log n)

28

3/30/21

8

How can we avoid the worst case?

Inject randomness into the data

void randomizedPartition(E [] nums, int start, int end){
int i = randomInt(start, end);
swap(nums, i, end);
return partition = partition(nums, start, end);

}

Randomized quicksort is average case O(n log n)

29

What is the worst case running time of
randomized Quicksort?

O(n2)

We could still get very unlucky and pick
“bad” partitions at every step

30

Quicksort properties

Stable?

In-place?

31

Quicksort properties

Stable: possible, but not the way we’ve written it (and
requires more storage!)

In-place: yes!

32

3/30/21

9

Sorting summarized

in-place? stable? Best Average Worst Notes

Selection X O(n2) O(n2) O(n2) n swaps

Insertion X X O(n) O(n2) O(n2) use for
partially
ordered

Merge X O(n log n) O(n log n) O(n log n) guaranteed

Quick X O(n log n) O(n log n) O(n2) fastest in
practice

33

Comparable interface

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

Interface Comparable<T>

int compareTo(T other)
¨ -1: this object is less than other (technically, any negative number)
¨ 0: this object is equal to other

¨ 1: this object is greater than other (technically, any positive number)

34

Built-in sorting

Arrays: (https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html)

Collections:(https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html)

35

Collections

36

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html

3/30/21

10

Naturally sorting cards

https://github.com/pomonacs622021sp/LectureCode
/blob/master/SortingCards/SortableCard.java

SortableCard:
¨ implements Comparable<SortableCard>
¨ Utilizes String.compareTo and Integer.compare
¨ Foreach loop!

naturalSort()

37

Comparator: unnatural sorting

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.
html

Create a different ordering without having to modify the class!

Interface Comparator<T>

int compare(T o1, T o2)
-1: o1 is less than o2 (technically, any negative number)
0: o1 is equal to o2
1: o1 is greater than o2 (technically, any positive number)

38

Unnatural sorting

Arrays: (https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html)

Collections:(https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html)

39

Unnaturally sorting cards

https://github.com/pomonacs622021sp/LectureCode
/blob/master/SortingCards/BridgeCardSort.java

¨ Add 20 to aces
¨ Reverse the suit ordering
¨ Reverse the number ordering

bridgeOrderingSort

40

https://github.com/pomonacs622021sp/LectureCode/blob/master/SortingCards/SortableCard.java
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
https://github.com/pomonacs622021sp/LectureCode/blob/master/SortingCards/BridgeCardSort.java

3/30/21

11

Iterator

https://docs.oracle.com/javase/8/docs/api/java/util/Iterat
or.html

A way to move through all of the data in a collection

Interface Iterator<E>:
¨ boolean hasNext()
¨ E next()

Have we seen this before? How can we iterate through the data?

41

Iterator

42

Iterator example

What would we see printed?

43

Iterator example

bananas
taste
good

44

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

3/30/21

12

Iterator example

What would we see printed?

45

Iterator example

bananas
bananas
taste
good
taste

Each iterator has its own state!

46

Iterable

https://docs.oracle.com/javase/8/docs/api/java/lan
g/Iterable.html

interface Iterable<E>:
¨ Iterator<E> iterator()

Just a single method that returns an Iterator.

47

Why Iterable??

Any class that implements the Iterable class
can be used in a foreach loop!

48

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

3/30/21

13

How to make a class Iterable

¨ Implement Iterable interface

¨ Make a private inner class that implements the
Iterator interface

¨ Have the iterator method return an instance of the
private inner class

49

An example

https://github.com/pomonacs622021sp/LectureCode
/blob/master/Iterable/IterableArrayList.java

Each instance of the inner class will have its own count
instance variable

50

Iterator vs. Iterable

Iterators are a useful mechanism for iterating over
almost any type of data

Iterators are the thing that do most of the work (and
require most of the coding!)

Iterable allows us to use it in a foreach loop and is
often just creating an instance of an Iterator

51

https://github.com/pomonacs622021sp/LectureCode/blob/master/Iterable/IterableArrayList.java

