
3/23/21

1

MERGESORT
David Kauchak
CS 62 – Spring 2021

1

Admin

Compression assignment

Lab tomorrow

2

Sorting

Insertion sort

Selection sort

How do they work? Best, worst, average case
runtime?

3

Selection sort

3 44 38 5 47 1 36 26
unsortedsorted

Divide the array into two parts: a sorted part on the left and an
unsorted part on the right

Repeat:
¨ Find the smallest element in the unsorted part
¨ Swap it with the leftmost element of the unsorted array
¨ The sorted array is now one element larger

4

3/23/21

2

1 3 5 2647 4436 38

Selection sort

Divide the array into two parts: a sorted part on the left and an
unsorted part on the right

Repeat:
¨ Find the smallest element in the unsorted part
¨ Swap it with the leftmost element of the unsorted array
¨ The sorted array is now one element larger

unsortedsorted

5

Selection sort: overall runtime

Divide the array into two parts: a sorted part on the left and an
unsorted part on the right

Repeat:
¨ Find the smallest element in the unsorted part
¨ Swap it with the leftmost element of the unsorted array
¨ The sorted array is now one element larger

O(n2)Best case = worst case = averages case =

6

Insertion sort

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
¨ Look at the next element in the unsorted part
¨ Find the correct location in the sorted part (by sliding each item right one at a time)
¨ The sorted array is now one element larger

3 44 38 5 47 1 36 26

7

Insertion sort

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:

¨ Look at the next element in the unsorted part
¨ Find the correct location in the sorted part (by sliding each item right one at a time)
¨ The sorted array is now one element larger

3 5 38 4447 1 36 26
unsortedsorted

8

3/23/21

3

Insertion sort: overall runtime

Best case: O(n), the array is already sorted

Worst case: O(n2), the array is reverse sorted (same sum as before)

Average case: O(n2), n iterations and still have to move n/2 entries on average

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
¨ Look at the next element in the unsorted part
¨ Find the correct location in the sorted part (by sliding each item right one at a time)
¨ The sorted array is now one element larger

9

Sorting algorithm properties

Stable sorting algorithms

If there are ties, the elements occur in their original
order

Excel demo!

10

Insertion sort

Divide the array into two parts: a sorted part on the left and an
unsorted part on the right

Repeat:
¨ Find the smallest element in the unsorted part

¨ Swap it with the leftmost element of the unsorted array

¨ The sorted array is now one element larger

Selection sort

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
¨ Look at the next element in the unsorted part
¨ Find the correct location in the sorted part (by sliding each item right

one at a time)
¨ The sorted array is now one element larger

Are these stable?

11

Insertion sort is stable

Divide the array into two parts: a sorted part on the left and an
unsorted part on the right

Repeat:
¨ Find the smallest element in the unsorted part

¨ Swap it with the leftmost element of the unsorted array

¨ The sorted array is now one element larger

Selection sort

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
¨ Look at the next element in the unsorted part
¨ Find the correct location in the sorted part (by sliding each item right

one at a time)
¨ The sorted array is now one element larger

12

3/23/21

4

Sorting algorithm properties

In-place sorting

Can be done without additional memory, i.e., another
array

13

Insertion sort

Divide the array into two parts: a sorted part on the left and an
unsorted part on the right

Repeat:
¨ Find the smallest element in the unsorted part

¨ Swap it with the leftmost element of the unsorted array

¨ The sorted array is now one element larger

Selection sort

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
¨ Look at the next element in the unsorted part
¨ Find the correct location in the sorted part (by sliding each item right

one at a time)
¨ The sorted array is now one element larger

Are these in-place?

14

Insertion sort is in-place

Divide the array into two parts: a sorted part on the left and an
unsorted part on the right

Repeat:
¨ Find the smallest element in the unsorted part

¨ Swap it with the leftmost element of the unsorted array

¨ The sorted array is now one element larger

Selection sort is in place

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
¨ Look at the next element in the unsorted part
¨ Find the correct location in the sorted part (by sliding each item right

one at a time)
¨ The sorted array is now one element larger

15

Insertion sort

Divide the array into two parts: a sorted part on the left and an
unsorted part on the right

Repeat:
¨ Find the smallest element in the unsorted part

¨ Swap it with the leftmost element of the unsorted array

¨ The sorted array is now one element larger

Selection sort

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
¨ Look at the next element in the unsorted part
¨ Find the correct location in the sorted part (by sliding each item right

one at a time)
¨ The sorted array is now one element larger

What questions do we
ask about the data?

16

3/23/21

5

Insertion sort

Divide the array into two parts: a sorted part on the left and an
unsorted part on the right

Repeat:
¨ Find the smallest element in the unsorted part

¨ Swap it with the leftmost element of the unsorted array

¨ The sorted array is now one element larger

Selection sort

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
¨ Look at the next element in the unsorted part
¨ Find the correct location in the sorted part (by sliding each item right

one at a time)
¨ The sorted array is now one element larger

What questions do we
ask about the data?

Compare to other elements

17

Comparable interface

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

Interface Comparable<T>

int compareTo(T other)
¨ -1: this object is less than other (technically, any negative number)
¨ 0: this object is equal to other

¨ 1: this object is greater than other (technically, any positive number)

18

Which algorithm is this?

19

Which algorithm is this?

is a[j] < a[smallestIndex]

20

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

3/23/21

6

Which algorithm is this?

find the smallest value in the
unsorted part (i+1… end)

21

Which algorithm is this?

swap i and the smallest value

22

A better way

We can constrain the type variable to only allow for classes that implement Comparable<E>.

23

Assuming left (L) and right (R) are sorted already,
merge the two to create a new, single sorted array

R: 2 4 6 7L: 1 3 5 8

How can we do this?

Merge

24

3/23/21

7

Merge

R: 2 4 6 7L: 1 3 5 8

Create a new array to hold the
result that is the combined length

25

Merge

R: 2 4 6 7L: 1 3 5 8

What item is first?
How did you know?

26

Merge

R: 2 4 6 7L: 1 3 5 8

Compare the first two elements in
the lists!

27

Merge

R: 2 4 6 7L: 1 3 5 8

What item is second?
How did you know?

1

28

3/23/21

8

Merge

R: 2 4 6 7L: 1 3 5 8

Compare the smallest element that
hasn’t been used yet in each list
- For L, this is next element in the list
- For R, this is still the first element

1

29

Merge

R: 2 4 6 7L: 1 3 5 8

General algorithm?

1

30

Merge

R: 2 4 6 7L: 1 3 5 8

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

31

Merge

R: 2 4 6 7L: 1 3 5 8

1

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

32

3/23/21

9

Merge

R: 2 4 6 7L: 1 3 5 8

1

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

33

Merge

R: 2 4 6 7L: 1 3 5 8

1 2

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

34

Merge

R: 2 4 6 7L: 1 3 5 8

1 2

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

35

Merge

R: 2 4 6 7L: 1 3 5 8

1 2 3

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

36

3/23/21

10

Merge

R: 2 4 6 7L: 1 3 5 8

1 2 3

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

37

Merge

R: 2 4 6 7L: 1 3 5 8

1 2 3 4

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

38

Merge

R: 2 4 6 7L: 1 3 5 8

1 2 3 4

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

39

Merge

R: 2 4 6 7L: 1 3 5 8

1 2 3 4 5

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

40

3/23/21

11

Merge

R: 2 4 6 7L: 1 3 5 8

1 2 3 4 5

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

41

Merge

R: 2 4 6 7L: 1 3 5 8

1 2 3 4 5 6

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

42

Merge

R: 2 4 6 7L: 1 3 5 8

1 2 3 4 5 6

General algorithm:
- Keep the index for where we are in each input array
- Start them both at 0

- Repeat until we’re done:
- Compare current elements
- Copy smaller one down and increment that index

43

Merge

R: 2 4 6 7L: 1 3 5 8

1 2 3 4 5 6 7

What do we do now?

44

3/23/21

12

Merge

R: 2 4 6 7L: 1 3 5 8

1 2 3 4 5 6 7 8

If we run off the end of either array, just
copy the remaining from the other array

45

Merge in code

46

MergeSort

Divide the data in half

Call MergeSort on each half (resulting in two sorted
halves)

Merge the two halves

47

MergeSort

Divide the data in half

Call MergeSort on each half (resulting in two sorted
halves)

Merge the two halves

If the two halves are sorted, does MergeSort work?

48

3/23/21

13

MergeSort

Divide the data in half

Call MergeSort on each half (resulting in two sorted
halves)

Merge the two halves

What are we missing? Why does this work?

49

MergeSort

Divide the data in half

Call MergeSort on each half (resulting in two sorted
halves)

Merge the two halves

MergeSort is recursive. We’re missing a base case!

50

MergeSort: base case

7

Is this array sorted?

51

MergeSort: base case

7

If the array is of size 1 (or 0), it’s sorted

52

3/23/21

14

MergeSort

ms(7 1 4 2 6 5 3 8)

53

MergeSort

7 1 4 2 6 5 3 8

ms(7 1 4 2 6 5 3 8)

split in half

54

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

sort left side

55

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

split in half

7 1 4 2

56

3/23/21

15

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

sort left side

ms(7 1) 4 2

57

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

split in half

ms(7 1) 4 2

7 1

58

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

sort left side

ms(7 1) 4 2

ms(7) 1

59

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

what now?

ms(7 1) 4 2

ms(7) 1

60

3/23/21

16

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

Base case!

ms(7 1) 4 2

ms(7) 1
7

61

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) 4 2

ms(7) 1
7

what now?

62

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) 4 2

ms(7) ms(1)
7

sort right side!

63

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) 4 2

ms(7) ms(1)
7

sort right side!

1

64

3/23/21

17

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) 4 2

ms(7) ms(1)
7

what now?

1

65

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) 4 2

ms(7) ms(1)
7

merge!

1

66

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) 4 2

ms(7) ms(1)
7

merge!

1

1 7

67

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) ms(4 2)

ms(7) ms(1)
7

sort right

1

1 7

68

3/23/21

18

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) ms(4 2)

ms(7) ms(1)
7

split in half
sort left
sort right

1

1 7

ms(2)
4 2
ms(4)

69

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) ms(4 2)

ms(7) ms(1)
7 1

1 7

ms(2)
4 2
ms(4)

merge!

70

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) ms(4 2)

ms(7) ms(1)
7 1

1 7

ms(2)
4 2
ms(4)

merge!

2 4

71

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) ms(4 2)

ms(7) ms(1)
7 1

1 7

ms(2)
4 2
ms(4)

now what?

2 4

72

3/23/21

19

MergeSort

ms(7 1 4 2) 6 5 3 8

ms(7 1 4 2 6 5 3 8)

ms(7 1) ms(4 2)

ms(7) ms(1)
7 1

1 7

ms(2)
4 2
ms(4)

merge!

2 4

1 2 4 7

73

MergeSort

ms(7 1 4 2) ms(6 5 3 8)

ms(7 1 4 2 6 5 3 8)

ms(7 1) ms(4 2)

ms(7) ms(1)
7 1

1 7

ms(2)
4 2
ms(4)

sort right side!

2 4

1 2 4 7

74

MergeSort

ms(7 1 4 2) ms(6 5 3 8)

ms(7 1 4 2 6 5 3 8)

ms(7 1) ms(4 2)

ms(7) ms(1)
7 1

1 7

ms(2)
4 2
ms(4)

sort right side!

2 4

1 2 4 7

…

3 5 6 8

75

MergeSort

ms(7 1 4 2) ms(6 5 3 8)

ms(7 1 4 2 6 5 3 8)

ms(7 1) ms(4 2)

ms(7) ms(1)
7 1

1 7

ms(2)
4 2
ms(4)

merge!

2 4

1 2 4 7

…

3 5 6 8

76

3/23/21

20

MergeSort

ms(7 1 4 2) ms(6 5 3 8)

ms(7 1 4 2 6 5 3 8)

ms(7 1) ms(4 2)

ms(7) ms(1)
7 1

1 7

ms(2)
4 2
ms(4)

merge!

2 4

1 2 4 7

…

3 5 6 8

1 2 3 4 5 6 7 8

77

MergeSort: implementation 1

78

