

1

Admin

Erin's office hours today 7-8pm (going forward)

My office hours today 3:30-4pm

Compression assignment hints/observations

Sorting algorithms

Adaptive heapsort	Comb sort	Pancake sort
Bitonic sorter	Flashsort	Quicksort
Block sort	Gnome sort	Radix sort
Bubble sort	Heapsort	Selection sort
Bucket sort	Insertion sort	Shell sort
Cascade mergsort	Library sort	Spaghetti sort
Cocktail sort	Mergesort	Treesort

Selection sort
Divide the data into two parts: sorted and unsorted
Repeat:

5 Selection sort

3443854713626
sorted unsorted

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:
\square Find the smallest element in the unsorted part
\square Swap it with the leftmost element of the unsorted array
\square The sorted array is now one element larger

7

Selection sort

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:

\square Find the smallest element in the unsorted part
\square Swap it with the leftmost element of the unsorted array
\square The sorted array is now one element larger

6

Selection sort			
$\begin{array}{lllllll} 34438 & 5 & 47 & 1 & 36 & 26 \end{array}$			
Divide the array into two parts: a sorted part on the left and an unsorted part on the right Repeat: - Find the smallest element in the unsorted part - Swap it with the leftmost element of the unsorted array - The sorted array is now one element larger			

8

9

Selection sort

1443854733626

sorted unsorted Smallest?

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:

\square Find the smallest element in the unsorted part
\square Swap it with the leftmost element of the unsorted array
\square The sorted array is now one element larger

11

Selection sort

1443854733626

sorted unsorted

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:
\square Find the smallest element in the unsorted part
\square Swap it with the leftmost element of the unsorted array
The sorted array is now one element larger

10
Selection sort
sorted unsorted

Divide the array into two parts: a sorted part on the left and an
unsorted part on the right

Repeat:
Find the smallest element in the unsorted part
Swap it with the leftmost element of the unsorted array
The sorted array is now one element larger

12

Selection sort
$1 \begin{array}{lllll}1 & 38 & 547443626\end{array}$
sorted unsorted
Divide the array into two parts: a sorted part on the left and an unsorted part on the right
Repeat: Find the smallest element in the unsorted part Swap it with the leftmost element of the unsorted array The sorted array is now one element larger

13

Selection sort

1352647443638

sorted unsorfed

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:

- Find the smallest element in the unsorted part
- Swap it with the leftmost element of the unsorted array
\square The sorted array is now one element larger

Selection sort

1353847443626

sorted unsorted

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:

- Find the smallest element in the unsorted part
- Swap it with the leftmost element of the unsorted array
- The sorted array is now one element larger

14

16
Running time to find the smallest element
Best case?
Worst case?
Average case?
Divide the array into two parts: a sorted part on the left and an
unsorted part on the right
Repeat:
Find the smallest element in the unsorted part
Swap it with the leftmost element of the unsorted array
The sorted array is now one element larger

17

19

Running time to find the smallest element

All cases: size_of_unsorted_array - we have to search through the entire unsorted array to find it

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:
\square Find the smallest element in the unsorted part
\square Swap it with the leftmost element of the unsorted array

- The sorted array is now one element larger

18

Overall runtime
3443854713626
sorted unsorted
size_of_unsorted_array
How big is this for the first teration? n

20

21

Overall runtime
1 44 38 5 47 3 sorted unsorted sor 26
size_of_unsorted_array
How big is this for the second iteration? n n-

22

23

24

25

27

Overall runtime

1352636384447

sorted
unsorted
size_of_unsorted_array

How big is this for the last iteration? 1

26

Overall runtime

$$
\text { runtime }=\sum_{i=1}^{n} i \quad \text { ? }
$$

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:
\square Find the smallest element in the unsorted part

- Swap it with the leftmost element of the unsorted array
\square The sorted array is now one element larger

28

Overall runtime

$$
\text { runtime }=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:
\square Find the smallest element in the unsorted part
\square Swap it with the leftmost element of the unsorted array

- The sorted array is now one element larger

29

Selection sort: overall runtime

$$
\text { runtime }=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \mathrm{O}\left(\mathrm{n}^{2}\right)
$$

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:

\square Find the smallest element in the unsorted part
\square Swap it with the leftmost element of the unsorted array
\square The sorted array is now one element larger

Overall runtime

$$
\text { runtime }=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \text { O(?) }
$$

Divide the array into two parts: a sorted part on the left and an unsorted part on the right

Repeat:
\square Find the smallest element in the unsorted part

- Swap it with the leftmost element of the unsorted array
- The sorted array is now one element larger

Insertion sort

$$
\begin{array}{l|l|l|l|l|l}
34438 & 5 & 47 & 136 & 26 \\
\hline
\end{array}
$$

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order
Repeat:
\square Look at the next element in the unsorted part
\square Find the correct location in the sorted part (by sliding each item right one at a time)

- The sorted array is now one element larger

33

Insertion sort

3384454713626

> sorted unsorted

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:

- Look at the next element in the unsorted part

Find the correct location in the sorted part (by sliding each item right one at a time)
The sorted array is now one element larger

Insertion sort

3443854713626

soried unsoried

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
\square Look at the next element in the unsorted part
\square Find the correct location in the sorted part (by sliding each item right one at a time)

- The sorted array is now one element larger

34

Insertion sort

$$
33844547113626
$$

sorted unsorted

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
Look at the next element in the unsorted part
\square Find the correct location in the sorted part (by sliding each item right one at a time)
\square The sorted array is now one element larger

37

39

Insertion sort

3385444713626

soried unsoried

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
\square Look at the next element in the unsorted part
\square Find the correct location in the sorted part (by sliding each item right one at a time)

- The sorted array is now one element larger

38

Insertion sort

3538444713626
sorted unsorted

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
\square Look at the next element in the unsorted part
\square Find the correct location in the sorted part (by sliding each item right one at a time)
\square The sorted array is now one element larger

40

Insertion sort						
3 5 38 4447 13626 sorted unsorted Is 5 in the correct spot?						
Divide the array into two parts: left part: left elements in sorted order right part: right elements in unsorted order Repeat: - Look at the next element in the unsorted part \square Find the correct location in the sorted part (by sliding each item right one at a time) \square The sorted array is now one element larger						

41

Insertion sort

3538444713626

sorted unsorted

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
\square Look at the next element in the unsorted part
\square Find the correct location in the sorted part (by sliding each item right one at a time)

- The sorted array is now one element larger

42

44

45

Insertion sort
$\begin{array}{lllll}1 & 3 & 5 & 3844473626\end{array}$
sorted unsorted Was that fast or slow?

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
\square Look at the next element in the unsorted part
\square Find the correct location in the sorted part (by sliding each item right one at a time)

- The sorted array is now one element larger

46

Running time to find the correct spot

Best case: $\mathrm{O}(1)$, it's larger than any element to the left

Worst case: size_sorted_part, it's smaller than any element to the left

Average case: size_sorted_part/2
Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:
L Look at the next element in the unsorted part
\square Find the correct location in the sorted part (by sliding each item right one at a time)
The sorted array is now one element larger

48

Insertion sort: Overall runtime
Best case? When does this happen?
Worst case? When does this happen?
Average case?
Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order
Repeat:
Look at the next element in the unsorted part
Find the correct location in the sorted part (by sliding each item right one at a time)
The sorted array is now one element larger

49

Overall runtime

Best case: $\mathrm{O}(\mathrm{n})$, the array is already sorted

Worst case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$, the array is reverse sorted (same sum as before)

Average case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$, n iterations and still have to move $\mathrm{n} / 2$ entries on average

Divide the array into two parts:
left part: left elements in sorted order
right part: right elements in unsorted order

Repeat:

- Look at the next element in the unsorted part
\square Find the correct location in the sorted part (by sliding each item right one at a time)
- The sorted array is now one element larger

50

