
3/16/21

1

HASHTABLES 2
David Kauchak
CS 62 – Spring 2021

1

Admin

Lab tomorrow
¨ Midterm recap (save questions for then)
¨ Course feedback discussion
¨ Start next assignment (2 week assignment)

Quiz on Thursday

2

Sets

An unordered collection
¨ Things can be added and removes
¨ Check if things are in the set

3

Why not just arrays?

Array

universe of keys - U
array must be as large
as the universe of keys

4

3/16/21

2

Why not just arrays?

Array

array must be as large
as the universe of keys

space of actual keys
used is often much,
much smaller than the
universe of keys

actual
keys, n

universe of keys - U

5

Hashtables

Array null null null null null 5 null 7 null null null null null null null m

Using an array is still a good idea

Key idea: need to translate from the key into an index in
the array

6

Hash function, h

A hash function is a function that maps the universe of
keys to a restricted range (e.g., the size of an array)

universe of keys - U

m << |U|

hash function, h: U èm

7

Hash function, h

A hash function is a function that maps the universe of
keys to a restricted range (e.g., the size of an array)

universe of keys - U

m << |U|

hash function, h: U èm

8

3/16/21

3

Hash function, h

A hash function is a function that maps the universe of
keys to a restricted range (e.g., the size of an array)

universe of keys - U

m << |U|

hash function, h: U èm

9

Collisions

A collision occurs when h(x) = h(y), but x ≠ y

A good hash function will minimize the number of collisions

Because the number of hashtable (array) entries is less than the
possible keys (i.e. m < |U|) collisions are inevitable!

We need to handle collisions!

Collision resolution techniques?

10

Collision resolution by chaining
Hashtable consists of an array of linked lists

When a collision occurs, the element is added to linked list at that location

If two entries x ≠ y have the same hash value h(x) = h(y), then table[h(x)] will
contain a linked list with both values

null null null null null null null null null null nullnull

11

Collision resolution by chaining

put?

containsKey?

remove

null null null null null null null null null null nullnull

12

3/16/21

4

Collision resolution by chaining

put: addFirst h(key)

containsKey: contains h(key)

remove: remove h(key)

null null null null null null null null null null nullnull

13

Running time?

put: addFirst h(key)

containsKey: contains h(key)

remove: remove h(key)

null null null null null null null null null nullnull null

14

Running time?

put: O(1)

containsKey: O(length of linked list)

remove: O(length of linked list)

null null null null null null null null null nullnull null

15

Length of the chain

Worst case?

16

3/16/21

5

Length of the chain

Worst case?
¤ All elements hash to the same location
¤ h(k) = 4
¤ n

…

17

Length of the chain

Average case:
Depends on how well the hash function distributes the keys

What is the best we could hope for a hash function?
n simple uniform hashing: an element is equally likely to end up in any of

the m slots

Under simple uniform hashing what is the average length of a
chain in the table?

n n keys over m slots = n / m = α

18

The load of a table/hashtable

m = number of possible entries in the table
n = number of keys stored in the table

α = n/m is the load factor of the hashtable

The smaller α, the more wasteful the table

The load also helps us talk about run time

19

Average chain length

If you roll a fair m sided die n times, how many times
are we likely to see a given value?

For example, 10 sided die:
1 time

l 1/10

100 times
l 100/10 = 10

20

3/16/21

6

containsKey average running time

Two cases:
¤ Key is not in the table

n must search all entries
n O(1 + α)

¤ Key is in the table
n on average search half of the entries
n O(1 + α)

21

Hash functions

Function that takes as input a key and return a value
from 0 to m-1 (the size of the hashtable)

universe of keys - U

hash function, h: U èm

22

Hash functions

What makes a good hash function?
¤ Approximates the assumption of simple uniform hashing
¤ Deterministic – h(x) should always return the same value
¤ Low cost – if it is expensive to calculate the hash value (e.g. log n) then

we don’t gain anything by using a table

Challenge: we don’t generally know the distribution of the keys
¤ Frequently data tend to be clustered (e.g. similar strings, run-times, SSNs).

A good hash function should spread these out across the table

23

Division method

h(k) = k mod m

m k h(k)

11 25

11 1
11 17
13 133
13 7
13 25

24

3/16/21

7

Division method

h(k) = k mod m

m k h(k)

11 25

11 1
11 17
13 133
13 7
13 25

3
1

6
3
7
12

25

Division method

m k bin(k) h(k)

8 25 11001

8 1 00001

8 17 10001

Don’t use a power of two. Why?

26

Division method

Don’t use a power of two. Why?

if h(k) = k mod 2p, the hash function is just the lower p bits of the
value

m k bin(k) h(k)

8 25 11001 1

8 1 00001 1

8 17 10001 1

27

Division method

Good rule of thumb for m is a prime number not too
close to a power of 2

Pros:
l quick to calculate

l easy to understand

Cons:
l keys close to each other will end up close in the hashtable

28

3/16/21

8

Multiplication method

Multiply the key by a constant 0 < A < 1 and extract
the fractional part of kA, then scale by m to get the
index

ë ûë û)()(kAkAmkh -=

extracts the fractional
portion of kA

29

Multiplication method

Common choice is for m as a power of 2 and

Why a power of 2?

Book has other heuristics

6180339887.02/)15(=-=A

ë ûë û)()(kAkAmkh -=

30

Multiplication method

m k A

8 15 0.618

8 23 0.618

8 100 0.618

kA h(k)

ë ûë û)()(kAkAmkh -=

31

Multiplication method

m k A

8 15 0.618

8 23 0.618

8 100 0.618

9.27 floor(0.27*8) = 2

kA h(k)

14.214 floor(0.214*8) = 1

61.8 floor(0.8*8) = 6

ë ûë û)()(kAkAmkh -=

32

3/16/21

9

Other hash functions

http://en.wikipedia.org/wiki/List_of_hash_functions

cyclic redundancy checks (i.e. disks, cds, dvds)

Checksums (i.e. networking, file transfers)

Cryptographic (i.e. MD5, SHA)

33

Open addressing

Keeping around an array of linked lists can be inefficient and a
hassle

Like to keep the hashtable as just an array of elements (no
pointers)

How do we deal with collisions?
¤ compute another slot in the hashtable to examine

34

Hash functions with open addressing

Hash function must define a probe sequence which is the list of
slots to examine when a put or containsKey

The hash function takes an additional parameter i which is the
number of collisions that have already occurred

The probe sequence must be a permutation of every hashtable
entry. Why?

{ h(k,0), h(k,1), h(k,2), …, h(k, m-1) } is a permutation of
{ 0, 1, 2, 3, …, m-1 }

35

Hash functions with open addressing

Hash function must define a probe sequence which is the list of
slots to examine when doing a put or containsKey

The hash function takes an additional parameter i which is the
number of collisions that have already occurred

The probe sequence must be a permutation of every hashtable
entry. Why?

If not, we wouldn’t explore all the possible
location in the table!

36

http://en.wikipedia.org/wiki/List_of_hash_functions

3/16/21

10

Probe sequence

h(k, 0)

37

Probe sequence

h(k, 1)

38

Probe sequence

h(k, 2)

39

Probe sequence

h(k, 3)

40

3/16/21

11

Probe sequence

h(k, …)

…

must visit all locations

41

Open addressing: put

What does this code do?

42

Open addressing: put

get the first entry to check

43

Open addressing: put

as long as we haven’t
check all entries and the
entry isn’t empty

44

3/16/21

12

Open addressing: put

get the next entry to check

45

Open addressing: put

put the key into the table
(assumes table wasn’t full)

46

Open addressing

containsKey?

remove?

47

Open addressing: containsKey

48

3/16/21

13

Open addressing: containsKey

very similar to put!

also need to check if we’ve found the key

49

Open addressing: containsKey

return false if we searched the whole table or
we got to a null entry

50

Open addressing: remove

Two options:
¤ mark node as “deleted” (rather than null)

n modify containsKey to continue looking if a “deleted” node
is seen

n modify put to fill in “deleted” entries
n increases search times!

¤ if a lot of deleting will happen, use chaining

51

Probing schemes

Linear probing – if a collision occurs, go to the next slot
¤ h(k,i) = (h(k) + i) mod m
¤ Does it meet our requirement that it visits every slot?
¤ for example, m = 7 and h(k) = 4

h(k,0) = 4
h(k,1) = 5
h(k,2) = 6
h(k,3) = 0
h(k,3) = 1

52

3/16/21

14

Linear probing: put

h(, 0)

53

Linear probing: put

h(, 1)

54

Linear probing: put

h(, 2)

55

Linear probing: put

h(, 3)

56

3/16/21

15

Linear probing: put

h(, 3)

57

Linear probing

Problem:
primary clustering – long runs of occupied slots tend to
build up and these tend to grow

any value here results in an
increase in the cluster

become more and more probable
for a value to end up in that range

58

Quadratic probing

h(k,i) = (h(k) + c1i + c2i2) mod m

Rather than a linear sequence, we probe based on a
quadratic function

Problems:
l must pick constants and m so that we have a proper probe

sequence

l if h(x) = h(y), then h(x,i) = h(y,i) for all i

l secondary clustering

59

Double hashing

Probe sequence is determined by a second hash function

h(k,i) = (h1(k) + i(h2(k))) mod m

Problem:
l h2(k) must visit all possible positions in the table

60

3/16/21

16

Running time of put and containsKey
for open addressing

Depends on the hash function/probe sequence

Worst case?
O(n) – probe sequence visits every full entry first before
finding an empty

61

Running time of put and containsKey
for open addressing

Average case?

We have to make at least one probe

62

Running time of put and containsKey
for open addressing

Average case?

What is the probability that the first probe will not be
successful (assume uniform hashing function)?

α

63

Running time of put and containsKey
for open addressing

Average case?

What is the probability that the first two probed slots
will not be successful?

~α2
why
‘~’?

64

3/16/21

17

Running time of put and containsKey
for open addressing

Average case?

What is the probability that the first two probed slots
will not be successful?

~α2𝑛 − 1
𝑚 − 1

Technically, second probe is:

65

Running time of put and containsKey
for open addressing

Average case?

What is the probability that the first three probed slots
will not be successful?

~α3

66

Running time of insert and search for
open addressing

Average case: expected number of probes
sum of the probability of making 1 probe, 2 probes, 3
probes, …

...1][32 ++++= aaaprobesE

å =
=

m

i
i

0
a

å¥

=
<

0i
ia

a-
=
1
1

67

Average number of probes

a-
=
1
1][probesE

68

3/16/21

18

How big should a hashtable be?

A good rule of thumb is the hashtable should be around half
full

What happens when the hashtable gets full?
Copy: Create a new table and copy the values over

n results in one expensive put
n simple to implement

Amortized copy: When a certain ratio is hit, grow the table, but copy
the entries over a few at a time with every insert

n no single put is expensive and can guarantee per put performance
n more complicated to implement

69

To the code…

abstract classes!

Making your classes hashable:

- hashCode

- equals

HashSet:

https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.html

HashMap:
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

70

