

1

Sets

An unordered collection
\square Things can be added and removes
\square Check if things are in the set
public interface Set<E> \{ public void put(E key); public boolean containsKey(E key);
public E remove(E key);
public boolean isEmpty(); public int size();
\}

3

Admin

Lab tomorrow

\square Midterm recap (save questions for then)
\square Course feedback discussion
\square Start next assignment (2 week assignment)

Quiz on Thursday

4

5

Hash function, h

A hash function is a function that maps the universe of keys to a restricted range (e.g., the size of an array)

hash function, $\mathrm{h}: \mathrm{U} \rightarrow \mathrm{m}$

Hash function, h

A hash function is a function that maps the universe of keys to a restricted range (e.g., the size of an array)

8

9

11

Collisions

A collision occurs when $h(x)=h(y)$, but $x \neq y$

A good hash function will minimize the number of collisions

Because the number of hashtable (array) entries is less than the possible keys (i.e. $m<|U|$) collisions are inevitable!

We need to handle collisions!
Collision resolution techniques?

10

13

15

14

Length of the chain
Worst case?

16

17

The load of a table/hashtable
$\mathrm{m}=$ number of possible entries in the table
$\mathrm{n}=$ number of keys stored in the table
$\alpha=n / m$ is the load factor of the hashtable

The smaller α, the more wasteful the table

The load also helps us talk about run time

18

Average chain length

If you roll a fair m sided die n times, how many times are we likely to see a given value?

For example, 10 sided die:
1 time

- $1 / 10$

100 times

- $100 / 10=10$

20

containsKey average running time

Two cases:
\square Key is not in the table

- must search all entries
$-O(1+\alpha)$
\square Key is in the table
- on average search half of the entries
$-\mathrm{O}(1+\alpha)$

21

Hash functions

What makes a good hash function?
\square Approximates the assumption of simple uniform hashing

- Deterministic $-h(x)$ should always return the same value
- Low cost - if it is expensive to calculate the hash value (e.g. $\log n$) then we don't gain anything by using a table

Challenge: we don't generally know the distribution of the keys
\square Frequently data tend to be clustered (e.g. similar strings, run-times, SSNs). A good hash function should spread these out across the table

Hash functions

Function that takes as input a key and return a value from 0 to $\mathrm{m}-1$ (the size of the hashtable)

22

Division method	
$h(k)=k$ mod m	
m	k
11	25
11	1
11	17
13	133
13	7
13	25

24

25

27

Division method

Don't use a power of two. Why?

m	k	$\operatorname{bin}(\mathrm{k})$	$\mathrm{h}(\mathrm{k})$
8	25	11001	
8	1	00001	
8	17	10001	

26
Division method
Good rule of thumb for m is a prime number not too

close to a power of 2 | Pros: |
| :--- |
| - quick to calculate |
| Consy to understand |
| - keys close to each other will end up close in the hashtable |

28

29

Multiplication method				
m k A kA $\mathrm{h}(\mathrm{k})$ 8 15 0.618 8 23 0.618 8 100 0.618 $h(k)=\lfloor m(k A-\lfloor k A\rfloor)\rfloor$				

31

Multiplication method

$$
h(k)=\lfloor m(k A-\lfloor k A\rfloor\rfloor
$$

Common choice is for m as a power of 2 and

$$
A=(\sqrt{5}-1) / 2=0.6180339887
$$

Why a power of 2?
Book has other heuristics

30

Multiplication method				
m	k	A	kA	$\mathrm{h}(\mathrm{k})$
8		0.618	9.27	floor $\left(0.27^{*} 8\right)=2$
8		0.618	14.214	floor $(0.214 * 8)=1$
8		0.618	61.8	floor $(0.8 * 8)=6$
$h(k)=\lfloor m(k A-\lfloor k A\rfloor\rfloor$				

32

Other hash functions

http://en.wikipedia.org/wiki/List_of_hash_functions
cyclic redundancy checks (i.e. disks, cds, dvds)

Checksums (i.e. networking, file transfers)

Cryptographic (i.e. MD5, SHA)

33

Hash functions with open addressing

Hash function must define a probe sequence which is the list of slots to examine when a put or containsKey

The hash function takes an additional parameter i which is the number of collisions that have already occurred

The probe sequence must be a permutation of every hashtable entry. Why?
$\{h(k, 0), h(k, 1), h(k, 2), \ldots, h(k, m-1)\}$ is a permutation of $\{0,1,2,3, \ldots, m-1\}$

35

Open addressing

Keeping around an array of linked lists can be inefficient and a hassle

Like to keep the hashtable as just an array of elements (no pointers)

How do we deal with collisions?

- compute another slot in the hashtable to examine

34

Hash functions with open addressing

Hash function must define a probe sequence which is the list of slots to examine when doing a put or containsKey

The hash function takes an additional parameter i which is the number of collisions that have already occurred

The probe sequence must be a permutation of every hashtable entry. Why?

If not, we wouldn't explore all the possible location in the table!

37

39

Probe sequence

40

41

Open addressing: put

public void put(E key) \{
int $i=0$; probeSequence(key, i); get the first entry to check
while(i < table. length $\& \&$
table[next] != null) \{
i++;
next $=$ probeSequence(key, i);
\}
table[next] = key;
count++;
\}

43

42

Open addressing: put

public void put(E key) \{
int $i=0$;
int next $=$ probeSequence(key, i);

as long as we haven't check all entries and the entry isn't empty ++;
next $=$ probeSequence(key, i);
\}
table[next] = key;
count++;

45

46

Open addressing: containsKey
public boolean containsKey(E key) \{
int $i=0$;
while(i < table. length \&\& table[next] != null \&\& !table[next].equals(key))
next $=$ probeSequence(key, i);
\}
// only 3 ways to exit the while loop
return !(i $=$ table length \| table[next]
\}
.
!table[next].equals(key))
i++;
urn ! $(i==$ table.length || table[next] == null);

49

Open addressing: remove

Two options:

- mark node as "deleted" (rather than null)
- modify containsKey to continue looking if a "deleted" node is seen
- modify put to fill in "deleted" entries
- increases search times!
\square if a lot of deleting will happen, use chaining

Open addressing: containsKey

public boolean containsKey (E key)
int $i=0 ;$
int next $=$ probeSequence(key, i);
while(i < table. length \&\& !table[next].equals(key)) \{
$\begin{aligned} & \text { i++; } \\ & \text { next }\end{aligned}=$ probeSequence(key, i);
\}
// only 3 ways to exit the while loop
// the two of which below mean we didn't find it
return !(i $==$ table. length || table[next] $==$ null) ;
\}
return false if we searched the whole table or
we got to a null entry

50

Probing schemes
Linear probing - if a collision occurs, go to the next slot
$\square h(k, i)=(h(k)+i)$ mod m
\square Does it meet our requirement that it visits every slot?
\square for example, $m=7$ and $h(k)=4$
$h(k, 0)=4$
$h(k, 1)=5$
$h(k, 2)=6$
$h(k, 3)=0$
$h(k, 3)=1$

52

53

55

56

57

59

Linear probing

Problem:
primary clustering - long runs of occupied slots tend to build up and these tend to grow
\qquad

58

60

Running time of put and containsKey
for open addressing
Depends on the hash function/probe sequence
Worst case?
O(n) - probe sequence visits every full entry first before
finding an empty

61

Running time of put and containsKey for open addressing

Average case?

We have to make at least one probe

62

63

Running time of put and containsKey for open addressing

Average case?

What is the probability that the first two probed slots will not be successful?

64

65

Running time of insert and search for open addressing

Average case: expected number of probes
sum of the probability of making 1 probe, 2 probes, 3 probes, ...

$$
\begin{aligned}
E[\text { probes }] & =1+\alpha+\alpha^{2}+\alpha^{3}+\ldots \\
& =\sum_{i=0}^{m} \alpha^{i} \\
& <\sum_{i=0}^{\infty} \alpha^{i} \\
& =\frac{1}{1-\alpha}
\end{aligned}
$$

67

66

Average number of probes

$$
E[\text { probes }]=\frac{1}{1-\alpha}
$$

α	Average number of searches
0.1	$1 /(1-.1)=1.11$

$0.25 \quad 1 /(1-.25)=1.33$
$0.5 \quad 1 /(1-.5)=2$
$0.75 \quad 1 /(1-.75)=4$
$0.9 \quad 1 /(1-.9)=10$
$0.95 \quad 1 /(1-.95)=20$
$0.99 \quad 1 /(1-.99)=100$

68
How big should a hashtable be?
A good rule of thumb is the hashtable should be around half
full
What happens when the hashtable gets full?
Copy: Create a new table and copy the values over
= results in one expensive put
= simple to implement
Amortized copy: When a certain ratio is hit, grow the table, but copy
the entries over a few at a time with every insert
= no single put is expensive and can guarantee per put performance
= more complicated to implement

69
To the code...
abstract classes!
Making your classes hashable:
hashCode
equals
HashSet:
https://docs.oracle.com/iavase/8/docs/api/iava/util/HashSet.html
HashMap:
https://docs.oracle.com/iavase/8/docs/api/iava/util/HashMap.html
70

