
2/12/20

1

ExtendableArrays
(aka, ArrayLists)

David Kauchak
cs62

Spring 2020

Extendable arrays

Given that we’re storing our data in an array
(of a fixed size), how can we implement ”add”?

Extendable arrays
Idea 1: Each time we call add, create a new array one
element large, copy the data over and add the element

Running time: O(n)

Extendable arrays

Idea 2: Allocate extra, unused memory and save room to
add elements

For example: new ArrayList(2)

allocated for
actual array

extra space for
calls to add

2/12/20

2

Extendable arrays

Idea 2: Allocate extra, unused memory and save room to
add elements

Adding an item:

Running time: O(1) Problems?

Extendable arrays

Idea 2: Allocate extra, unused memory and save room to
add elements

How much extra space do we allocate?

Too little, and we might run out (e.g. add 15 items)

Too much, and we waste lots of memory Ideas?

Extendable arrays

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy the current data
For example: new ArrayList(2)

…

Extendable arrays

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy the current data
For example: new ArrayList(2)

…

Running time: O(n)

2/12/20

3

Extendable arrays

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy the current data
For example: new ArrayList(2)

…

How much extra memory
should we allocate?

Extendable arrays

Idea 3: Allocate some extra memory and when it fills up,
allocate some more and copy the current data
For example: new ArrayList(2)

What is the best case running
time of add? O(1)

What is the worst case running
time of add? O(n)

Can we bound this tighter?

Extendable arrays
…

Challenge: most of the calls to add will be O(1)

How else might we talk about runtime?

What is the average running time of add in the
worst case?

Note this is different than the average-case running time

Amortized analysis
What does “amortize” mean?

2/12/20

4

Amortized analysis
There are many situations where the worst case running
time is bad

However, if we average the operations over n operations,
the average time is more reasonable

This is called amortized analysis
l This is different than average-case running time, which requires

reasoning about the input/situations that the method will be called
l The worse case running time doesn’t change

Amortized analysis
Many approaches for doing amortized analysis

Aggregate method
l figure out the big-O runtime for a sequence of n calls
l divide by n to get the average run-time per call

Amortized analysis

total_cost(n) = basic_cost(n) + double_cost(n)

Assume we start with an empty array with 1 location and
we double the size of the arraylist each time we fill it up

What is the cost to insert n items?

WHITEBOARD J

Amortized analysis

double_cost(n) ≤ 1+ 2+ 4+8+16+...+ n = 2n

total_cost(n) = basic_cost(n) + double_cost(n)

basic_cost(n) = O(n)

total_cost(n) = O(n) amortized O(1)

Assume we start with an empty array with 1 location and
we double the size of the arraylist each time we fill it up

What is the cost to insert n items?

2/12/20

5

Amortized analysis vs.
worse case
What is the worst case for add?

l Still O(n)
l If you have an application that needs it to be O(1), this

implementation will not work!

amortized analysis give you the cost of n
operations (i.e. average cost) not the cost of any
individual operation

Extendable arrays
What if instead of doubling the array, we increase
the array by a fixed amount (call it k) each time

Is the amortized run-time still O(1)?
l No!
l Why?

Amortized analysis
Consider the cost of n insertions for some constant k

double_cost(n) =k+2k+3k+4k+5k+...+n

total_cost(n) = basic_cost(n) + double_cost(n)

basic_cost(n) = O(n)

 = ki
i=1

n/k

∑

 =k i
i=1

n/k

∑

 =k

n
k
n
k
+1

!

"
#

$

%
&

2
=O(n2)

Amortized analysis
Consider the cost of n insertions for some constant k

total_cost(n) = O(n)+O(n2)

= O(n2)

amortized O(n)!

