

Amortized analysis

There are many situations where the worst case running time is bad

However, if we average the operations over n operations, the average time is more reasonable

This is called *amortized* analysis

- This is different than average-case running time, which requires reasoning about the input/situations that the method will be called
- The worse case running time doesn't change

Amortized analysis

Many approaches for doing amortized analysis

Aggregate method

- figure out the big-O runtime for a sequence of *n* calls
- divide by *n* to get the average run-time per call

Amortized analysis

Assume we start with an empty array with 1 location and we **double the size** of the arraylist each time we fill it up

What is the cost to insert n items?

 $total_cost(n) = basic_cost(n) + double_cost(n)$

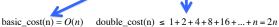
WHITEBOARD ©

Amortized analysis

Assume we start with an empty array with 1 location and we **double the size** of the arraylist each time we fill it up

What is the cost to insert n items?

 $total_cost(n) = basic_cost(n) + double_cost(n)$



 $total_cost(n) = O(n)$ amortized O(1)

Amortized analysis vs. worse case

What is the worst case for add?

- Still O(n)
- If you have an application that needs it to be O(1), this implementation will not work!

amortized analysis give you the cost of *n* operations (i.e. average cost) **not** the cost of any individual operation

Extendable arrays

What if instead of doubling the array, we increase the array by a fixed amount (call it k) each time

Is the amortized run-time still O(1)?

- No!
- Why?

Amortized analysis

Consider the cost of n insertions for some constant k

$$total_cost(n) = basic_cost(n) + double_cost(n)$$

$$basic_cost(n) = O(n)$$

$$double_cost(n) = k+2k+3k+4k+5k+...+n$$

$$= \sum_{i=1}^{n/k} ki$$

$$= k \sum_{i=1}^{n/k} i$$

$$= k \frac{\frac{n}{k} \left(\frac{n}{k} + 1\right)}{2} = O(n^2)$$

Amortized analysis

Consider the cost of n insertions for some constant k

total_cost(n) =
$$O(n) + O(n^2)$$

= $O(n^2)$

amortized O(n)!