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Admin

Assignment 8

Lab tomorrow:
¤ Course feedback
¤ Summary/Review
¤ Interview programming questions (optional)



A few last shortest paths things



Minimum spanning trees (MST)
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The lowest weight set of edges that connects all vertices of an 
undirected graph with positive weights



MSTs

Can an MST have a cycle?
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MSTs

Can an MST have a cycle?
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Applications?

Connectivity
l Networks (e.g. communications)
l Circuit design/wiring

hub/spoke models (e.g. flights, transportation)



Cuts

A cut is a partitioning of the vertices into two sets S and V-S

An edge “crosses” the cut if it connects a vertex uÎV and vÎV-S
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Minimum cut property
Given a partition S, let edge e be the minimum cost 
edge that crosses the partition.  Every minimum 
spanning tree contains edge e.
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S V-S

e’

e

Consider an MST with edge e’ that is not the minimum edge

Minimum cut property
Given a partition S, let edge e be the minimum cost 
edge that crosses the partition.  Every minimum 
spanning tree contains edge e.



S V-S

e’

e

Using e instead of e’, still connects the graph, 
but produces a tree with smaller weights

Minimum cut property
Given a partition S, let edge e be the minimum cost 
edge that crosses the partition.  Every minimum 
spanning tree contains edge e.



Minimum cut property
If the minimum cost edge that crosses the partition is 
not unique, then some minimum spanning tree contains 
edge e.

A

B D

C

4

1

2
3

4
F

E

54

6

4



Kruskal’s algorithm

Given a partition S, let edge e be the minimum cost edge 
that crosses the partition.  Every minimum spanning tree 
contains edge e.

Kruskals:
- Sort edges by increasing weight
- for each edge (by increasing weight):

- check if adding edge to MST creates a cycle
- if not, add edge to MST



Kruskal’s algorithm
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create a cycle
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create a cycle
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Kruskal’s algorithm Add smallest edge that doesn’t 
create a cycle
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create a cycle



Practice



Solution

Sum = 8 + 8 + 9 + 9  + 11 + 11 + 12 + 14 = 82 



Why does Kruskal’s work?

Never adds an edge that creates a cycle

Therefore, always adds lowest cost edge to connect two connected 
components.  By min cut property, that edge must be part of the 
MST

Kruskals:
- Sort edges by increasing weight
- for each edge (by increasing weight):

- check if adding edge to MST creates a cycle
- if not, add edge to MST



Kruskal’s details

Uses a data structure called “disjoint set” to efficiently 
check whether adding an edge creates a cycle

Run-time: O(E log E) (bounded by the sort)



Prim’s algorithm

Greedily grow the MST starting at a vertex:

- Start with a random vertex and count that vertex as 
connected by the MST

- Add the edge with the smallest weight that connects 
a vertex not  onnected by the MST

- Repeat until we’ve added V-1 edges



Prim’s
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not connected by the MST



Prim’s
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Prim’s
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not connected by the MST



Prim’s
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weight that connects a vertex 
not connected by the MST



Prim’s
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Add the edge with the smallest 
weight that connects a vertex 
not connected by the MST



Prim’s
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not connected by the MST



Prim’s
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Prim’s
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Prim’s
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Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

5

Add the edge with the smallest 
weight that connects a vertex 
not connected by the MST



Prim’s
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Prim’s
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Practice: start at vertex 0



Solution

Sum = 8 + 8 + 9 + 9  + 11 + 11 + 12 + 14 = 82 



Why does Prim’s work?

Let S be the set of vertices visited so far

The only time we add a new edge is if it’s the lowest weight edge 
from S to V-S

Given a partition S, let edge e be the minimum cost 
edge that crosses the partition.  Every minimum 
spanning tree contains edge e.



Prim’s
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How do we find the smallest 
weight edge? Or, how could 
we keep track of it?

Add the edge with the smallest 
weight that connects a vertex 
not connected by the MST



Prim’s
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Very similar implementation 
to Dijksra’s!

Use a priority queue

Add the edge with the smallest 
weight that connects a vertex 
not connected by the MST



Running time of Prim’s

Varies depending on the priority queue 
implementation

Practical version: O(E log V)


