
MINIMUM SPANNING TREES

David Kauchak
CS 140 – Spring 2020

Admin

Assignment 8

Lab tomorrow:
¤ Course feedback
¤ Summary/Review
¤ Interview programming questions (optional)

A few last shortest paths things

Minimum spanning trees (MST)

A

B D

C

4

1

2
3

4
F

E

54

6

4

A

B D

C

4

1

2

F

E

5

4

The lowest weight set of edges that connects all vertices of an
undirected graph with positive weights

MSTs

Can an MST have a cycle?

A

B D

C

4

1

2

F

E

54

4

MSTs

Can an MST have a cycle?

A

B D

C

4

1

2

F

E

54

Applications?

Connectivity
l Networks (e.g. communications)
l Circuit design/wiring

hub/spoke models (e.g. flights, transportation)

Cuts

A cut is a partitioning of the vertices into two sets S and V-S

An edge “crosses” the cut if it connects a vertex uÎV and vÎV-S

A

B D

C

4

1

2
3

4
F

E

54

6

4

Minimum cut property
Given a partition S, let edge e be the minimum cost
edge that crosses the partition. Every minimum
spanning tree contains edge e.

A

B D

C

4

1

2
3

4
F

E

54

6

4

S V-S

e’

e

Consider an MST with edge e’ that is not the minimum edge

Minimum cut property
Given a partition S, let edge e be the minimum cost
edge that crosses the partition. Every minimum
spanning tree contains edge e.

S V-S

e’

e

Using e instead of e’, still connects the graph,
but produces a tree with smaller weights

Minimum cut property
Given a partition S, let edge e be the minimum cost
edge that crosses the partition. Every minimum
spanning tree contains edge e.

Minimum cut property
If the minimum cost edge that crosses the partition is
not unique, then some minimum spanning tree contains
edge e.

A

B D

C

4

1

2
3

4
F

E

54

6

4

Kruskal’s algorithm

Given a partition S, let edge e be the minimum cost edge
that crosses the partition. Every minimum spanning tree
contains edge e.

Kruskals:
- Sort edges by increasing weight
- for each edge (by increasing weight):

- check if adding edge to MST creates a cycle
- if not, add edge to MST

Kruskal’s algorithm

A

B D

C

4

1

2
3

4
F

E

54

6

4

G

MST
A

B D

C

F

E

Add smallest edge that doesn’t
create a cycle

A

B D

C

4

1

2
3

4
F

E

54

6

4

G

MST
A

B D

C
1

F

E

Kruskal’s algorithm Add smallest edge that doesn’t
create a cycle

A

B D

C

4

1

2
3

4
F

E

54

6

4

G

MST
A

B D

C
1

2

F

E

Kruskal’s algorithm Add smallest edge that doesn’t
create a cycle

A

B D

C

4

1

2
3

4
F

E

54

6

4

G

MST
A

B D

C

4

1

2

F

E

Kruskal’s algorithm Add smallest edge that doesn’t
create a cycle

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

G

MST
A

B D

C

4

1

2

F

E

4

Kruskal’s algorithm Add smallest edge that doesn’t
create a cycle

A

B D

C

4

1

2
3

4
F

E

5
4

6

4

G

MST
A

B D

C

4

1

2

F

E

54

Kruskal’s algorithm Add smallest edge that doesn’t
create a cycle

Practice

Solution

Sum = 8 + 8 + 9 + 9 + 11 + 11 + 12 + 14 = 82

Why does Kruskal’s work?

Never adds an edge that creates a cycle

Therefore, always adds lowest cost edge to connect two connected
components. By min cut property, that edge must be part of the
MST

Kruskals:
- Sort edges by increasing weight
- for each edge (by increasing weight):

- check if adding edge to MST creates a cycle
- if not, add edge to MST

Kruskal’s details

Uses a data structure called “disjoint set” to efficiently
check whether adding an edge creates a cycle

Run-time: O(E log E) (bounded by the sort)

Prim’s algorithm

Greedily grow the MST starting at a vertex:

- Start with a random vertex and count that vertex as
connected by the MST

- Add the edge with the smallest weight that connects
a vertex not onnected by the MST

- Repeat until we’ve added V-1 edges

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

4 5

6

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

5

6

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

1 5

4 2

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

5

4 2

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

5

4 2

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

5

4

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

5

4

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

5

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

5

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4 MST

A

B D

C

F

E

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Practice: start at vertex 0

Solution

Sum = 8 + 8 + 9 + 9 + 11 + 11 + 12 + 14 = 82

Why does Prim’s work?

Let S be the set of vertices visited so far

The only time we add a new edge is if it’s the lowest weight edge
from S to V-S

Given a partition S, let edge e be the minimum cost
edge that crosses the partition. Every minimum
spanning tree contains edge e.

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4

MST

A

B D

C

F

E

1 5

4 2

How do we find the smallest
weight edge? Or, how could
we keep track of it?

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Prim’s

A

B D

C

4

1

2
3

4
F

E

54

6

4

MST

A

B D

C

F

E

1 5

4 2

Very similar implementation
to Dijksra’s!

Use a priority queue

Add the edge with the smallest
weight that connects a vertex
not connected by the MST

Running time of Prim’s

Varies depending on the priority queue
implementation

Practical version: O(E log V)

