
GRAPHS: SHORTEST PATHS
David Kauchak
CS 62 – Spring 2020

Admin

Assignment 8

Graphs

A graph is a set of vertices V and a set of edges
(u,v) Î E where u,v Î V

A

B

C

E
D

F

G

Search

BFS: breadth first search
¤ Explores vertices in increasing distance (wrt number of

edges) from the starting vertex
¤ Uses a queue to keep track of vertices to explore

DFS: depth first search:
¤ Goes as far down a path first and then works its way back
¤ Two versions: stack and recursive version

Run-time: O(V + E)

Connected – every pair of vertices is connected by a path

A

B

C

E
D

F

G

Algorithm?

Connectedness

Connectedness

Why does this work?

If we can get from u to every
vertex then we know a path
exists between all vertices.

Path from a to b: a – u – b

Pick any starting vertex u

Run DFS/BFS from u

For each vertex v:
if !visited[v]

return false

return true

Connected – every pair of vertices is connected by a path

Strongly connected (directed graphs) –
Every two vertices are reachable by a path

A

B

C

E
D

F

G

Strongly connected

Strongly connected

Pick any starting vertex u

Run DFS/BFS from u

For each vertex v:
if !visited[v]

return false

return true

Does this work?

Strongly connected (directed graphs) –
Every two vertices are reachable by a path

Strongly connected

Pick any starting vertex u

Run DFS/BFS from u

For each vertex v:
if !visited[v]

return false

return true

Does this work?

Strongly connected (directed graphs) –
Every two vertices are reachable by a path

No!

Path from a to b: a – u – b

We know we can get from u to b,
but we don’t know that we can get
from a to s (directed graph!)

Reverse of a graph

Given a graph G, we can calculate the reverse of a
graph GR by reversing the direction of all the edges

A

B

C

E
D

A

B

C

E
D

G GR

Strongly connected

Strongly-Connected(G)
- Run BFS/DFS from some node u
- If not all nodes are visited:

return false
- Create graph GR

- Run BFS/DFS on GR from node u
- If not all nodes are visited:

return false
- return true

Is it correct?

What do we know after the first search?
¤ Starting at u, we can reach every node

What do we know after the second search (reverse graph)?
¤ All nodes can reach u. Why?
¤ We can get from u to every node in GR, therefore, if we reverse the

edges (i.e. G), then we have a path from every node to u

Which means that any node can reach any other node! Given
any two nodes s and t we can create a path through u

s u t… …

Run-times?

Connectedness

Pick any starting vertex u

Run DFS/BFS from u

For each vertex v:
if !visited[v]

return false

return true

What is the run-time?

Detecting cycles

Undirected graph
¤ BFS or DFS. If we reach a node we’ve seen already, then we’ve found a

cycle

Directed graph

A

B
D

have to be careful

Detecting cycles

Undirected graph
¤ BFS or DFS. If we reach a node we’ve seen already, then we’ve found a

cycle

Directed graph
¤ Call TopologicalSort (more on this next week!)
¤ If the length of the list returned ≠ |V| then a cycle exists

Shortest paths

What is the shortest path from a to d?

A

B

C E

D

Shortest paths

A

B

C E

D

How can we find this?

Shortest paths

A

B

C E

D

BFS visits vertices in increasing distance!

BFS with distances

Look at ShortestPaths.bfsDistances in GraphExamples

https://github.com/pomonacs622020sp/LectureCode/tree/master/GraphExamples

https://github.com/pomonacs622020sp/LectureCode/tree/master/GraphExamples

Shortest paths

What is the shortest path from a to d?

A

B

C E

D

1

1

3

2

23

4

Shortest paths

We can still use BFS

A

B

C E

D

1

1

3

2

23

4

Shortest paths

We can still use BFS

A

B

C E

D

1

1

3

2

23

4

A

B

C E

D

Shortest paths

We can still use BFS

A

B

C E

D

Shortest paths

What is the problem?

A

B

C E

D

Shortest paths

Running time is dependent on the weights!

A

B

C4

1

2

A

B

C200

50

100

Shortest paths

A

B

C200

50

100

A

B

C

Shortest paths

A

B

C

Shortest paths

A

B

C

Shortest paths

A

B

C

Nothing will change as we expand the frontier
until we’ve gone out 100 levels

Key idea

Explore the vertices in order of increasing distance
from the starting vertex

Keep track of the distances to each vertex

If we find a better path, update that distance

Dijkstra’s high-level

Explore the vertices in order of increasing distance from the starting vertex

Use a priority queue to keep track of the shortest path found so far to a vertex

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

A

B

C E

D

1

1

3

3

21

4

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
¥

¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
¥

0

Heap

A 0
B ¥
C ¥
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
¥

0

Heap

B ¥
C ¥
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
¥

0

Heap

B ¥
C ¥
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
1

0

Heap

C 1
B ¥
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

A

B

C E

D

1

1

3

3

21

4

¥ ¥

¥
1

0

Heap

C 1
B ¥
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

A

B

C E

D

1

1

3

3

21

4

3 ¥

¥
1

0

Heap

C 1
B 3
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

A

B

C E

D

1

1

3

3

21

4

3 ¥

¥
1

0

Heap

C 1
B 3
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

3 ¥

¥
1

0

Heap

B 3
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

3 ¥

¥
1

0

Heap

B 3
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

3 ¥

¥
1

0

Heap

B 3
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

2 ¥

¥
1

0

Heap

B 2
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

2 ¥

¥
1

0

Heap

B 2
D ¥
E ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

2 ¥

5
1

0

Heap

B 2
E 5
D ¥

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

2 ¥

5
1

0

Heap

B 2
E 5
D ¥

Frontier?

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

2 ¥

5
1

0

Heap

B 2
E 5
D ¥

All nodes reachable
from starting node
within a given distance

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

Heap

E 3
D 5

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

Heap

D 5

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

Heap

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

A

B

C E

D

1

1
1

2 5

3
1

0

Heap

3

Initialize: distance to start = 0 and all others infinity

repeat
get vertex v with shortest distance

for each vertex, adj, adjacent to v (edge exists v -> adj)
if path v -> adj is shortest then best path for adj so far

update the distance for adj
update the priority queue

Dijkstra’s algorithm

Dijkstra’s algorithm

Dijkstra’s BFS

Dijkstra example

Look at ShortestPaths.dijkstra in GraphExamples

https://github.com/pomonacs622020sp/LectureCode/tree/master/GraphExamples

https://github.com/pomonacs622020sp/LectureCode/tree/master/GraphExamples

Why does it work?

When a vertex is removed from the priority queue, distTo[v]
is the actual shortest distance from s to v

¤ The only time a vertex gets removed is when the distance
from s to that vertex is smaller than the distance to any
remaining vertex

¤ Therefore, there cannot be any other path that hasn’t been
visited already that would result in a shorter path

Why does it work?

When a vertex is removed from the priority queue, distTo[v]
is the actual shortest distance from s to v

¤ The only time a vertex gets removed is when the distance
from s to that vertex is smaller than the distance to any
remaining vertex

¤ Therefore, there cannot be any other path that hasn’t been
visited already that would result in a shorter path

Does this make any assumptions?

What about this graph?

A

B

C E

D

1

-3

3

3

2
1

4

What’s the shortest path from A to C?
What would Dijkstra’s do?

What about this graph?

A

B

C E

D

1

-3

3

3

2
1

4

Dijkstra’s only works on graphs with positive edge weights

Why does it work?

When a vertex is removed from the priority queue, distTo[v]
is the actual shortest distance from s to v

¤ The only time a vertex gets removed is when the distance
from s to that vertex is smaller than the distance to any
remaining vertex

¤ Therefore, there cannot be any other path that hasn’t been
visited already that would result in a shorter path

Assuming no negative edge weights!

Relaxing an edge

This update is called “relaxing” an edge

We can apply this to an edge as many times as we want

This idea is used in other shortest paths algorithms (e.g., Bellman-Ford)

Dijkstra in practice
don’t insert everything into pq

only insert starting vertex

insert when we discover a vertex

Run-time

V calls

E calls

Running time?

Depends on the heap implementation

V * delMin E * decreaseKey Total

Array O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

O(|E| log |V|)

Running time?

Depends on the heap implementation

V * delMin E * decreaseKey Total

Array O(|V|2) O(|E|) O(|V|2)

Bin heap O(|V| log |V|) O(|E| log |V|) O((|V|+|E|) log |V|)

Fib heap O(|V| log |V|) O(|E|) O(|V| log |V| + |E|)

O(|E| log |V|)

Shortest paths

Dijkstra’s: single source shortest paths for positive
edge weight graphs

What is single source?

Shortest paths

Dijkstra’s: single source shortest paths for positive
edge weight graphs

Many other variants:
- graphs with negative edges
- all pairs shortest paths
- …

