GRAPHS: SHORTEST PATHS

David Kauchak
CS 62 - Spring 2020

Admin

Assignment 8

Graphs

A graph is a set of vertices V and a set of edges $(u, v) \in E$ where $u, v \in V$

Search

BFS: breadth first search
\square Explores vertices in increasing distance (wrt number of edges) from the starting vertex

- Uses a queue to keep track of vertices to explore

DFS: depth first search:

- Goes as far down a path first and then works its way back
- Two versions: stack and recursive version

Run-time: $\mathrm{O}(\mathrm{V}+\mathrm{E})$

Connectedness

Connected - every pair of vertices is connected by a path

Algorithm?

Connectedness

Connected - every pair of vertices is connected by a path

Pick any starting vertex u
Run DFS/BFS from u

For each vertex v :
if !visited[v]
return false

Why does this work?

If we can get from u to every vertex then we know a path exists between all vertices.

Path from a to $b: a-u-b$
return true

Strongly connected

Strongly connected (directed graphs) -
Every two vertices are reachable by a path

Strongly connected

Strongly connected (directed graphs) -
Every two vertices are reachable by a path

Pick any starting vertex u

Does this work?

Run DFS/BFS from u

For each vertex v :
if !visited[v]
return false
return true

Strongly connected

Strongly connected (directed graphs) -
Every two vertices are reachable by a path

Pick any starting vertex u
Run DFS/BFS from u

Does this work?

No!
For each vertex v :
if !visited[v]
return false
return true

Path from a to $b: a-u-b$

We know we can get from u to b, but we don't know that we can get from a to s (directed graph!)

Reverse of a graph

Given a graph G, we can calculate the reverse of a graph G^{R} by reversing the direction of all the edges

G

G^{R}

Strongly connected

Strongly-Connected(G)

- Run BFS/DFS from some node u
- If not all nodes are visited:
return false
- Create graph G^{R}
- Run BFS/DFS on G^{R} from node u
- If not all nodes are visited: return false
- return true

Is it correct?

What do we know after the first search?
\square Starting at u, we can reach every node

What do we know after the second search (reverse graph)?

- All nodes can reach u. Why?
\square We can get from u to every node in G^{R}, therefore, if we reverse the edges (i.e. G), then we have a path from every node to u

Which means that any node can reach any other node! Given any two nodes s and t we can create a path through u

Run-times?

Connectedness

Pick any starting vertex u
Run DFS/BFS from u

What is the run-time?
For each vertex v :
if !visited[v]
return false
return true

Detecting cycles

Undirected graph

- BFS or DFS. If we reach a node we've seen already, then we've found a cycle

Directed graph

have to be careful

Detecting cycles

Undirected graph

- BFS or DFS. If we reach a node we've seen already, then we've found a cycle

Directed graph
\square Call TopologicalSort (more on this next week!)
\square If the length of the list returned $\neq|V|$ then a cycle exists

Shortest paths

What is the shortest path from a to d?

Shortest paths

How can we find this?

Shortest paths

BFS visits vertices in increasing distance!

BFS with distances

Look at ShortestPaths.bfsDistances in GraphExamples

https://github.com/pomonacs622020sp/LectureCode/tree/master/GraphExamples

Shortest paths

What is the shortest path from a to d?

Shortest paths

We can still use BFS

Shortest paths

We can still use BFS

Shortest paths

We can still use BFS

Shortest paths

What is the problem?

Shortest paths

Running time is dependent on the weights!

Shortest paths

Shortest paths

Shortest paths

Shortest paths

Nothing will change as we expand the frontier until we've gone out 100 levels

Key idea

Explore the vertices in order of increasing distance from the starting vertex

Keep track of the distances to each vertex

If we find a better path, update that distance

Dijkstra's high-level

Explore the vertices in order of increasing distance from the starting vertex

Use a priority queue to keep track of the shortest path found so far to a vertex

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adj, adjacent to v (edge exists v -> adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queve

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adj, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj
update the priority queue

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj
update the priority queue

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adi) if path $v->$ adj is shortest then best path for adj so far update the distance for adj
update the priority queue

Heap
A 0
B ∞

C ∞
D ∞
E ∞

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Heap
B ∞
C ∞
D ∞
$E \infty$

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj
update the priority queue

Heap

B ∞
C ∞

D ∞
$E \infty$

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Heap

C 1
B ∞
D ∞
$E \infty$

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Heap

C 1
B ∞
D ∞
$E \infty$

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj
update the priority queue

Heap

C 1
B 3
D ∞
E ∞

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Heap

C 1
B 3
D ∞
$E \infty$

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj
update the priority queue

Heap
B 3
D ∞

$E \infty$

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Heap
B 3
D ∞
$E \infty$

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Heap

B 3
D ∞
$E \infty$

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Heap
B 2
D ∞
$E \infty$

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj
update the priority queve

Heap

B 2
D ∞

$E \infty$

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Heap

B 2
E 5
D ∞

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Heap
B 2
E 5
D ∞

Frontier?

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adi)
if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Heap
B 2
E 5
D ∞

All nodes reachable from starting node within a given distance

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj
update the priority queue

Heap
E 3
D 5

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj
update the priority queue

Heap
D 5

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adi, adjacent to v (edge exists $v->$ adi) if path $v->$ adj is shortest then best path for adj so far update the distance for adj update the priority queue

Initialize: distance to start $=0$ and all others infinity
repeat
get vertex v with shortest distance
for each vertex, adj, adjacent to v (edge exists $v->$ adj) if path $v->$ adj is shortest then best path for adj so far update the distance for adj
update the priority queue

Heap

Dijkstra's algorithm

public static void dijkstra(WeightedGraph g, int start) \{
IndexMinPQ<Double> pq = new IndexMinPQ<Double>(g.numberOfVertices());
int[] edgeTo = new int[g.numberOfVertices()];
double[] distTo = new double[g.numberOfVertices()];
for (int $v=0 ; \mathrm{v}$ < g.numberOfVertices(); v++) \{
distTo[v] = Double.POSITIVE_INFINITY;
pq.insert(v, Double.POSITIVE_INFINITY);
\}
distTo[start] = 0.0;
pq.decreaseKey(start, 0.0);
// relax vertices in order of distance from s
while(!pq.isEmpty()) \{
int $\mathrm{v}=\mathrm{pq}$. del Min();
for (WeightedEdge e : g.adj(v)) \{ int adj = e.to();
if(distTo[v] + e.weight() < distTo[adj]) \{
distTo[adj] = distTo[v] + e.weight();
edgeTo[adj] = v;
pq.decreaseKey(adj, distTo[adj]);
\}
\}
\}
\}

Dijkstra's algorithm

Dijkstra's

```
```

distTo[start] = 0.0;

```
```

distTo[start] = 0.0;
pq.decreaseKey(start, 0.0);
pq.decreaseKey(start, 0.0);
while(!pq.isEmpty()) {
while(!pq.isEmpty()) {
int v = pq.delMin();
int v = pq.delMin();
for (WeightedEdge e : g.adj(v)) {
for (WeightedEdge e : g.adj(v)) {
int adj = e.to();
int adj = e.to();
if(distTo[v] + e.weight() < distTo[adj]) {
if(distTo[v] + e.weight() < distTo[adj]) {
distTo[adj] = distTo[v] + e.weight();
distTo[adj] = distTo[v] + e.weight();
edgeTo[adj] = v;
edgeTo[adj] = v;
pq.decreaseKey(adj, distTo[adj]);
pq.decreaseKey(adj, distTo[adj]);
}
}
}
}
}

```
```

}

```
```


Dijkstra example

Look at ShortestPaths.dijkstra in GraphExamples

https://github.com/pomonacs622020sp/LectureCode/tree/master/GraphExamples

Why does it work?

When a vertex is removed from the priority queve, distTo[v] is the actual shortest distance from s to v
\square The only time a vertex gets removed is when the distance from s to that vertex is smaller than the distance to any remaining vertex
\square Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

Why does it work?

When a vertex is removed from the priority queve, distTo[v] is the actual shortest distance from s to v
\square The only time a vertex gets removed is when the distance from s to that vertex is smaller than the distance to any remaining vertex
\square Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

Does this make any assumptions?

What about this graph?

What's the shortest path from A to C ?
What would Dijkstra's do?

What about this graph?

Dijkstra's only works on graphs with positive edge weights

Why does it work?

When a vertex is removed from the priority queve, distTo[v] is the actual shortest distance from s to v
\square The only time a vertex gets removed is when the distance from s to that vertex is smaller than the distance to any remaining vertex
\square Therefore, there cannot be any other path that hasn't been visited already that would result in a shorter path

Assuming no negative edge weights!

Relaxing an edge

This update is called "relaxing" an edge

```
if( distTo[v] + e.weight() < distTo[adj] ) {
    distTo[adj] = distTo[v] + e.weight();
    edgeTo[adj] = v;
    pq.decreaseKey(adj, distTo[adj]);
}
```

We can apply this to an edge as many times as we want

This idea is used in other shortest paths algorithms (e.g., Bellman-Ford)

```
public static void fasterDijkstra(WeightedGraph g, int start) {
    IndexMinPQ<Double> pq = new IndexMinPQ<Double>(g.numberOfVertices());
    int[] edgeTo = new int[g.numberOfVertices()];
    double[] distTo = new double[g.numberOfVertices()];
    for( int v = 0; v < g.numberOfVertices(); v++ ) {
        distTo[v] = Double.POSITIVE_INFINITY;
    }
    distTo[start] = 0.0;
    pq.insert(start, 0.0);
                                    don't insert everything into pq
only insert starting vertex
    while( !pq.isEmpty() ) {
        int v = pq.delMin();
        for (WeightedEdge e : g.adj(v)) {
            int adj = e.to();
            if( distTo[v] + e.weight() < distTo[adj] ) {
                distTo[adj] = distTo[v] + e.weight();
                edgeTo[adj] = v;
                if( pq.contains(adj) ) {
                pq.decreaseKey(adj, distTo[adj]);
                } else {
                pq.insert(adj, distTo[adj]); insert when we discover a vertex
                }
        }
        }
    }

\section*{Run-time}
```

public static void dijkstra(WeightedGraph g, int start) {
IndexMinPQ<Double> pq = new IndexMinPQ<Double>(g.numberOfVertices());
int[] edgeTo = new int[g.numberOfVertices()];
double[] distTo = new double[g.numberOfVertices()];
for(int v = 0; v < g.numberOfVertices(); v++) {
distTo[v] = Double.POSITIVE_INFINITY;
pq.insert(v, Double.POSITIVE_INFINITY);
}
distTo[start] = 0.0;
pq.decreaseKey(start, 0.0);
// relax vertices in order of distance from s
while(!pq.isEmpty()) {
int v = pq.delMin();
for (WeightedEdge e : g.adj(v)) {
int adj = e.to();
if(distTo[v] + e.weight() < distTo[adj]) {
distTo[adj] = distTo[v] + e.weight();
edgeTo[adj] = v;
pq.decreaseKey(adj, distTo[adj]);
}
}
}
}

```

\section*{Running time?}

\section*{Depends on the heap implementation}
\begin{tabular}{lccc} 
& \(V{ }^{*}\) delMin & \(E\) * decreaseKey & Total \\
Array & \(\mathrm{O}\left(|\mathrm{V}|^{2}\right)\) & \(\mathrm{O}(|\mathrm{E}|)\) & \(\mathrm{O}\left(|\mathrm{V}|^{2}\right)\) \\
Bin heap & \(\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|)\) & \(\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)\) & \(\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \log |\mathrm{V}|)\) \\
& & & \(\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)\)
\end{tabular}

\section*{Running time?}

\section*{Depends on the heap implementation}
\begin{tabular}{lccc} 
& \(V{ }^{*}\) delMin & \(E^{*}\) decreaseKey & Total \\
Array & \(\mathrm{O}\left(|\mathrm{V}|^{2}\right)\) & \(\mathrm{O}(|\mathrm{E}|)\) & \(\mathrm{O}\left(|\mathrm{V}|^{2}\right)\) \\
Bin heap & \(\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|)\) & \(\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)\) & \(\mathrm{O}((|\mathrm{V}|+|\mathrm{E}|) \log |\mathrm{V}|)\) \\
\(\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)\)
\end{tabular}

\section*{Shortest paths}

Dijkstra's: single source shortest paths for positive edge weight graphs

What is single source?

\section*{Shortest paths}

Dijkstra's: single source shortest paths for positive edge weight graphs

Many other variants:
- graphs with negative edges
- all pairs shortest paths```

