GRAPHS

David Kauchak
CS 62 - Spring 2020

Admin

Last assignment out soon!

\square Familiarize yourself with the problem

- Take a look at the starter code
\square Probably won't be able to start coding until Tue.

Graphs

A mathematical model consisting of a set of nodes/vertices and edges

Graphs

A graph is a set of vertices V and a set of edges $(u, v) \in E$ where $u, v \in V$

Graphs

$V=\{A, B, C, D, E, F, G\}$
$E=\{(A, B),(A, D),(B, D),(C, D),(D, E),(E, F),(E, G)\}$

When do we see graphs in real life problems?

Transportation networks (flights, roads, etc.)

Communication networks

Web

Social networks

Circuit design

Bayesian networks

Graphs

How do graphs differ?
What are graph characteristics we might care about?

Different types of graphs

Undirected - edges do not have a direction

Different types of graphs

Directed - edges do have a direction

Different types of graphs

Weighted - edges have an associated weight

Different types of graphs

Weighted - edges have an associated weight

Terminology

When an edge connects two vertices, we say that the vertices are adjacent and that the edge is incident to both vertices

Terminology

When an edge connects two vertices, we say that the vertices are adjacent and that the edge is incident to both vertices

Terminology

The degree of a vertex is the number of edges incident to it

What is the degree of A ?
What is the degree of D ?

Terminology

The degree of a vertex is the number of edges incident to it

Terminology

The degree of a vertex is the number of edges incident to it

What is the degree of A ? What is the degree of D ?

Terminology

The degree of a vertex is the number of edges incident to it

What is the degree of A ? What is the degree of D ?

Terminology

Path - A path is a sequence of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$ and no edge is repeated

Terminology

Path - A path is a sequence of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$ and no edge is repeated $\{A, B, D, E, F\}$

Terminology

Path - A path is a sequence of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$ and no edge is repeated $\{C, D\}$

Terminology

Path - A path is a sequence of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$ and no edge is repeated

Terminology

Cycle - A path where the first and last node are the same

Terminology

Cycle - A path where the first and last node are the same

Edges: (A,B), (A,D), (B,D)
Path: B, A, D, B

Terminology

Cycle - A path where the first and last node are the same
not a cycle

Why not?

Terminology

Cycle - A path where the first and last node are the same

Is this a cycle?

Terminology

Cycle - A path where the first and last node are the same

Not a cycle!

Path - A path is a sequence of vertices $p_{1}, p_{2}, \ldots p_{k}$ where there exists an edge $\left(p_{i}, p_{i+1}\right) \in E$ and no edge is repeated

Cycle - A path where the first and last node are the same

Not a cycle!

Terminology

Cycle - A path where the first and last node are the same

Does this graph have a cycle?

Terminology

Cycle - A path where the first and last node are the same
not a cycle

Terminology

Cycle - A path $p_{1}, p_{2}, \ldots p_{k}$ where $p_{1}=p_{k}$
This would be a cycle

Terminology

Connected - every pair of vertices is connected by a path

Is this graph
connected?

Terminology

Connected - every pair of vertices is connected by a path
connected

Terminology

Connected - every pair of vertices is connected by a path

Is this graph
connected?

Terminology

Connected - every pair of vertices is connected by a path

Terminology

Strongly connected (directed graphs) -
Every two vertices are reachable by a path
Is this graph
strongly connected?

Terminology

Strongly connected (directed graphs) -
Every two vertices are reachable by a path
not strongly
connected

Terminology

Strongly connected (directed graphs) -
Every two vertices are reachable by a path
Is this graph
strongly connected?

Terminology

Strongly connected (directed graphs) -
Every two vertices are reachable by a path
not strongly
connected

Terminology

Strongly connected (directed graphs) -
Every two vertices are reachable by a path
Is this graph
strongly connected?

Terminology

Strongly connected (directed graphs) -
Every two vertices are reachable by a path
strongly
connected

Graphs aren't new...

Have we seen graphs in this class already?

Trees!

Different types of graphs

What is a tree (in our terminology)?

Different types of graphs

Tree - connected, undirected graph without any cycles

Different types of graphs

Tree - connected, undirected graph without any cycles

Different types of graphs

Tree - connected, undirected graph without any cycles

Different types of graphs

DAG - directed, acyclic graph

Different types of graphs

Complete graph - an edge exists between every node

Graph questions?

Does it have a cycle?

Is it connected? Strongly connected?

Is there a path from a to b ?

What is the shortest path from a to b ? In number of edges? In sum of the edge weights?

Representing graphs

Adjacency list - Each vertex $u \in V$ contains an adjacency list of the set of vertices v such that there exists an edge $(u, v) \in E$

Representing graphs

Adjacency list - Each vertex $u \in V$ contains an adjacency list of the set of vertices v such that there exists an edge (u, v) $\in E$

Representing graphs

Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

A 010100
B 100010
C 000010
D $1 \begin{array}{lllll}1 & 1 & 0 & 1\end{array}$
E 00010

Representing graphs

Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Representing graphs

Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Representing graphs

Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Representing graphs

Adjacency matrix - A $|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Representing graphs

Adjacency matrix - $\mathrm{A}|\mathrm{V}| \mathrm{x}|\mathrm{V}|$ matrix A such that:

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Adjacency list vs. adjacency matrix

Adjacency list Adjacency matrix

Pros/Cons?

Adjacency list vs. adjacency matrix

Adjacency list

Sparse graphs (e.g. web)
Space efficient
Must traverse the adjacency list to discover is an edge exists

Adjacency matrix

Dense graphs
Constant time lookup to discover if an edge exists Simple to implement
For non-weighted graphs, only requires boolean matrix

Weighted graphs

Adjacency list
store the weight as an additional field in the list

Weighted graphs

Adjacency matrix

$$
a_{i j}= \begin{cases}\text { weight } & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

ABCDE
A 08030
B 80020
C 000100
D 3210013
E 000130

