
BALANCED SEARCH TREES
David Kauchak
CS 62 – Spring 2020



Quiz



Binary Search Trees

BST – A binary tree where each each node has a key, and every node’s 
key is:

¨ Larger than all keys in its left subtree. (everything left is smaller)

¨ Smaller than all keys in its right subtree. (everything right is larger)
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Operations

Search – Does the key exist in the tree 

Insert – Insert the key into tree

Delete – Delete the key from the tree



Finding an element

Search(9)
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What is the worst case running time of search?



Finding an element
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Worst case, have to search to the lowest leaf
O(height)



Inserting

Insert(17) 12
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Inserting
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Worst case, have to search to the lowest leaf
O(height)



Deletion
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Deletion: case 1

No children

Just delete the node
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Deletion: case 1
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No children

Just delete the node



Deletion: case 2

One child

Splice out the node
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Deletion: case 2
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One child

Splice out the node



Deletion: case 3

Two children

Replace x with the smallest value of the right subtree
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How does this maintain the 
search tree property?



Deletion: case 3

Two children

Replace x with the smallest value of the right subtree
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- Larger than everything 
to the left

- Smaller than everything 
to the right



Deletion: case 3

Two children

Replace x with the smallest value of the right subtree
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Deletion

Delete 21



Deletion

Min of the right subtree



Deletion

Replace the value: involves a case 2 deletion



Deletion

Replace the value: involves a case 2 deletion



Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

Why?



Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion

Why?
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min The minimum cannot have a left child
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Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion
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What is the worst case running time of delete?



Deletion: case 3

The min of the right subtree will always be either a 
case 1 deletion or a case 2 deletion
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Case 1 and Case 2: O(1)
Case 3: Find min and do a case 1 or case 2 delete
O(height)



Delete implemented



Delete implemented

Search: find the key



Delete implemented

Case 1 and Case 2



Delete implemented

Case 3



Height of the tree

Most of the operations take time 
O(height)

We said trees built from random data have height 
O(log n), which is asymptotically tight

Two problems:
¤ We can’t always insure random data
¤ What happens when we delete nodes and insert others 

after building a tree?

Worst case height for binary search trees is O(n) L



Operations

Search – Does the key exist in the tree 

Insert – Insert the key into tree

Delete – Delete the key from the tree



Balanced trees

Make sure that the trees remain balanced!
¤ Red-black trees
¤ AVL trees
¤ 2-3 trees
¤ 2-3-4 trees
¤ B-trees
¤ …

Height is guaranteed to be O(log n)



2-3 trees 

2-node: one key and two children (left and right)
¤ everything in left is smaller than key

¤ everything right is larger than key

3-node: two keys (k1, k2)  and three children, left, middle and right
¤ k1 < k2

¤ everything in left is less than k1

¤ everything in middle is between k1 and k2

¤ everything in right is larger than k2



Search

How do we search for a key?



Search

Almost identical to BST search

Only difference: sometimes we have two keys



Search

M

Search(H)

Which child?
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Not found!
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Insertion

Like BST, insert always happens at a leaf

If the leaf is a 2-node, just insert it directly
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Where should it go?
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Insertion

Like BST, insert always happens at a leaf

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest



Insertion

M

E  J

A  C F H L S  XP

R

Insert(T)

If the leaf is a 3-node:
¤ We now have three values at this leaf

¤ Send the middle value up a node

¤ Make new 2-nodes out of the smallest and largest

Where should it go?
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Insertion
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If the leaf is a 3-node:
¤ We now have three values at this leaf

¤ Send the middle value up a node

¤ Make new 2-nodes out of the smallest and largest
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Insertion

M

E  J

A  C F H L S P

R  T

Insert(I)

If the leaf is a 3-node:
¤ We now have three values at this leaf

¤ Send the middle value up a node

¤ Make new 2-nodes out of the smallest and largest

X

Where should it go?
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Insertion
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If the leaf is a 3-node:
¤ We now have three values at this leaf

¤ Send the middle value up a node

¤ Make new 2-nodes out of the smallest and largest

XI

What now?
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If the leaf is a 3-node:
¤ We now have three values at this leaf

¤ Send the middle value up a node

¤ Make new 2-nodes out of the smallest and largest
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Repeat!
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If the leaf is a 3-node:
¤ We now have three values at this leaf

¤ Send the middle value up a node

¤ Make new 2-nodes out of the smallest and largest

XI
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Insertion

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

When will the height of the tree change?



Insertion

If the leaf is a 2-node, just insert it directly

If the leaf is a 3-node:
¤ We now have three values at this leaf
¤ Send the middle value up a node
¤ Make new 2-nodes out of the smallest and largest

Only when the root is a 3-node and we insert into 
a path that is all 3-nodes!

Effect: The tree can hold quite a few values 
before having to increase the height



Practice

Draw the 2-3 tree that results when you insert the keys:
E A S Y Q U T I O N in that order in an initially empty tree.



Running time

Worst case height: O(log n)

What does that mean?



Running time

Worst case height: O(log n)

Insert, search and delete are all O(log n)



2-3 search trees in practice

A pain to implement

Overhead can often make slower than standard BST

Other balanced trees exist that provide the same 
worst case guarantee, but are faster (e.g, red-black 
trees)



Readings and practice problems

Textbook: Chapter 3.3 (Pages 424-431)

Website: https://algs4.cs.princeton.edu/33balanced/

Practice problems: 3.3.2– 3.3.5

https://algs4.cs.princeton.edu/33balanced/

