
CS062  
DATA STRUCTURES AND ADVANCED PROGRAMMING

25: Midterm II Review

Alexandra Papoutsaki
Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition 

David Kauchak

SEARCHING



TODAY’S LECTURE IN A NUTSHELL

Lecture 25: Midterm Review

▸ Sorting 

▸ Heaps/Priority Queues 

▸ Dictionaries 

▸ Misc 

▸ Practice Problems 

▸ Answers

�2



TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Selection sort 

▸ Insertion sort 

▸ Merge sort 

▸ Quick sort 

▸ Heap sort

�3



TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Given an array of n items, sort them in non-descending order 
based on a comparable key. 

▸ Cost model counts comparisons (calls to less()) and 
exchanges (calls to exch()) (or array accesses). 

▸ Not in place: If linear extra memory is required. 

▸ Stable: If duplicate elements stay in the same order that they 
appear in the input. 

▸ Practice: https://visualgo.net/en/sorting (minus quick sort).

�4

https://visualgo.net/en/sorting


TODAY’S LECTURE IN A NUTSHELL

Selection sort - Algorithm

public static void sort(Comparable[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
            int min = i;
            for (int j = i+1; j < n; j++) {
                if (less(a[j], a[min]))
                    min = j;
            }
            exch(a, i, min);
       }
   }

�5



TODAY’S LECTURE IN A NUTSHELL

Selection sort - Key characteristics

▸ At the end of each iteration i: 

▸ a[0…i] is sorted. 

▸ no smaller item exists in a[i+1…n-1]. 

▸ In-place. 

▸ Not stable. 

▸ �  comparisons for best/average/worst case. 

▸ �  exchanges. 

▸ Slowest. Realistically, never used in practice.

O(n2)

O(n)

�6



TODAY’S LECTURE IN A NUTSHELL

Selection sort - Example

▸ Sort: 1,4,9,3,8,2.

�7

i iteration Result
0 1,4,9,3,8,2
1 1,2,9,3,8,4
2 1,2,3,9,8,4
3 1,2,3,4,8,9
4 1,2,3,4,8,9
5 1,2,3,4,8,9



TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Selection sort 

▸ Insertion sort 

▸ Merge sort 

▸ Quick sort 

▸ Heap sort

�8



TODAY’S LECTURE IN A NUTSHELL

Insertion sort - Algorithm

public static void sort(Comparable[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
           for (int j = i; j > 0; j--) {
               if(less(a[j], a[j-1])) 
                  exch(a, j, j-1);
               else
                  break;
           }
       }
   }

�9



TODAY’S LECTURE IN A NUTSHELL

Insertion sort - Key characteristics

▸ At the end of each iteration i: 

▸ a[0…i] is partially sorted. 

▸ In-place. 

▸ Stable. 

▸ �  comparisons/exchanges for average/worst case. 

▸ �  comparisons and 0 exchanges for best case (already sorted array). 

▸ Slow but in practice such little overhead that can be even faster than quick 
sort for small arrays. Often used below certain thresholds for merge sort and 
quick sort.

O(n2)

O(n)

�10



TODAY’S LECTURE IN A NUTSHELL

Insertion sort - Example

▸ Sort: 1,4,9,3,8,2.

�11

i iteration Result
0 1,4,9,3,8,2
1 1,4,9,3,8,2
2 1,4,9,3,8,2
3 1,3,4,9,8,2
4 1,3,4,8,9,2
5 1,2,3,4,8,9



TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Selection sort 

▸ Insertion sort 

▸ Merge sort 

▸ Quick sort 

▸ Heap sort

�12



TODAY’S LECTURE IN A NUTSHELL

Merge sort - Algorithm

private static void merge(Comparable[] a, Comparable[] aux,  
int lo, int mid, int hi) {
    for (int k = lo; k <= hi; k++)
        aux[k] = a[k]; 

    int i = lo, j = mid+1; 
    for (int k = lo; k <= hi; k++) {
        if (i > mid) //ran out of elements in the left subarray
           a[k] = aux[j++];
        else if (j > hi) //ran out of elements in the right subarray
            a[k] = aux[i++]; 
        else if (less(aux[j], aux[i]))
            a[k] = aux[j++];
        else
            a[k] = aux[i++]; 
    } 
}

�13

public static void sort(Comparable[] a) {
    Comparable[] aux = new Comparable[a.length];
    sort(a, aux, 0, a.length - 1);
}

private static void sort(Comparable[] a, Comparable[] aux,  
int lo, int hi) {
    if (hi <= lo)
        return; 
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}



TODAY’S LECTURE IN A NUTSHELL

Merge sort - Key characteristics

▸ Divide till you reach an array of a single element and conquer by 
merging two already-sorted subarrays into a sorted larger one. 

▸ Not in-place, requires linear extra memory. On-disk sort 
assignment showed how to use the disk if memory is not enough. 

▸ Stable. 

▸ �  comparisons/array accesses for best/average/worst case. 

▸ Stable performance, preferred for arrays of objects due to stability. 
Slower than quick sort on average. Not in-place so not good when 
memory is in short supply (e.g., embedded systems).

O(n log n)

�14



TODAY’S LECTURE IN A NUTSHELL

Merge sort - Example

▸ Sort: 1,4,9,3,8,2.

�15

1 4 9

1 4 9

1 4

1 4

1 4 9 3 8 2

1 4 9

3 8 2

3 8

3 8

3 8

2

2 3 8

1 2 3 4 8 9



TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Selection sort 

▸ Insertion sort 

▸ Merge sort 

▸ Quick sort 

▸ Heap sort

�16



TODAY’S LECTURE IN A NUTSHELL

Quick sort - Algorithm

    // partition the subarray a[lo..hi] so that a[lo..j-1] <= a[j] <= a[j+1..hi] and return the index j.
    private static int partition(Comparable[] a, int lo, int hi) {
        int i = lo;
        int j = hi + 1;
        Comparable v = a[lo];
        while (true) { 

            // find item greater than (or equal to) v to swap
            while (less(a[++i], v)) {
                if (i == hi) break;
            }

            // find item smaller than (or equal to) v to swap
            while (less(v, a[--j])) {
                if (j == lo) break; // redundant since a[lo] acts as sentinel
            }

            // check if pointers cross
            if (i >= j) break;

            exch(a, i, j);
        }

        // put partitioning item v at a[j]
        exch(a, lo, j);

        // now, a[lo .. j-1] <= a[j] <= a[j+1 .. hi]
        return j;
    }

�17

public static void sort(Comparable[] a) {
    StdRandom.shuffle(a);
    sort(a, 0, a.length - 1);
}
private static void sort(Comparable[] a, int lo, int hi) { 
    if (hi <= lo) return;
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}



TODAY’S LECTURE IN A NUTSHELL

Quick sort - Key characteristics

▸ Swap smaller elements than pivot to go to left, and larger elements to go to 
right subarray. 

▸ In-place. 

▸ Not stable. 

▸ �  comparisons/exchanges for best/average case. 

▸ �  comparisons/exchanges for worst case (already (reversely) sorted array, 
where pivot is always the smallest/largest element). 

▸ Preferred for arrays of primitives since stability does not matter. Fastest on 
average but if unlucky quadratic. In-place so good choice for memory efficient 
applications with tolerance for occasional slowdowns.

O(n log n)

O(n2)

�18



TODAY’S LECTURE IN A NUTSHELL

Quick sort - Example

▸ Sort: 1,4,9,3,8,2, assume shuffled.

�19

lo j hi Result
0 0 5 1,4,9,3,8,2
1 3 5 1,3,2,4,8,9
1 2 2 1,2,3,4,8,9
4 4 5 1,2,3,4,8,9

Final result: 1,2,3,4,8,9



TODAY’S LECTURE IN A NUTSHELL

Sorting

▸ Selection sort 

▸ Insertion sort 

▸ Merge sort 

▸ Quick sort 

▸ Heap sort

�20



TODAY’S LECTURE IN A NUTSHELL

Heap sort - Key characteristics

▸ Heap construction in � : heapify subtrees rooted in internal nodes.  

▸ There is also a slower �  version with � insertions. Avoid it. 

▸ Sortdown in � : Repeat: exchange root with last element and sink . 

▸ In-place. 

▸ Not stable. 

▸ �  comparisons/exchanges for best/average/worst case. 

▸ Slower than merge sort (and quick sort) but does not require extra memory. 
Good choice for memory efficient applications that need stable 
performance.

O(n)

O(n log n) n

O(n log n)

O(n log n)

�21



TODAY’S LECTURE IN A NUTSHELL

Heap sort - Example (Quiz 8)

▸ Sort: 1,4,9,3,8,2,

�22



TODAY’S LECTURE IN A NUTSHELL

Heap sort - Example

▸ Sort: 1,4,9,3,8,2,

�23



TODAY’S LECTURE IN A NUTSHELL

Heaps

▸ Insertion  

▸ Deletion

�24



TODAY’S LECTURE IN A NUTSHELL

Heaps

▸ Array representation of binary trees (at most 2 children for 
each node) which are complete (�  minimal height and 
nodes in last level as left as possible) and heap-ordered 
(every node is larger/equal to both of its children - if any).  

▸ For node i, left child can be found at 2i, right child at 2i+1, 
and parent at i/2. Elements start at index 1. 

▸ Heaps and priority queues are often considered synonyms. 

▸ Practice: https://visualgo.net/en/heap (including heap sort).

logn

�25

https://visualgo.net/en/heap


TODAY’S LECTURE IN A NUTSHELL

Heaps

▸ Insertion  

▸ Deletion

�26



TODAY’S LECTURE IN A NUTSHELL

Heaps - Insertion

�27

‣ Insert node at last level, as left as possible (or create a new level if last level is full). Swim 
newly-added node to its proper place so that heap-ordered property is satisfied.  
At most �  comparisons. 

public void insert(Key x) {  
   pq[++n] = x;  
   swim(n);  
}

private void swim(int k) {
   while (k > 1 && less(k/2, k)) {
      exch(k, k/2);
      k = k/2;
   }
}

O(log n)



TODAY’S LECTURE IN A NUTSHELL

Heaps

▸ Insertion  

▸ Deletion

�28



TODAY’S LECTURE IN A NUTSHELL

Heaps - Deletion

�29

‣ Exchange root with last element. Sink down the new root to its proper place so that heap-
ordered property is satisfied. Nullify index of deleted element and return it.  
At most �  comparisons. 

public Key delMax() {  
    Key max = pq[1];  
    exch(1, n--);  
    sink(1);  
    pq[n+1] = null;  
    return max;  
}

private void sink(int k) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && less(j, j+1))
            j++; 
        if (!less(k, j))
            break; 
        exch(k, j); 
        k = j; 
    } 
}

O(log n)



TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees 

▸ 2-3 search trees

�30



TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ (Possibly ordered by key) collections of key-value pairs. 
Keys are comparable and unique. Values cannot be null. 

▸ Ultimate goal is to achieve fast search based on key. 

▸ Support insertion, deletion, and possibly ordered 
operations.

�31



TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees 

▸ 2-3 search trees

�32



TODAY’S LECTURE IN A NUTSHELL

Binary search trees

▸ Binary trees with symmetric order (every node contains key larger than all keys in left subtree and 
smaller than all keys in right subtree). 

▸ Height can vary from �  (compact like complete trees) all the way to �  (sticks/twigs). 

▸ Practice: https://visualgo.net/en/bst  

public class BST<Key extends Comparable<Key>, Value> {
   private Node root;              // root of BST
 
   private class Node {
        private Key key;           // sorted by key
        private Value val;         // associated value
        private Node left, right;  // roots of left and right subtrees
        private int size;          // #nodes in subtree rooted at this

        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }

O(log n) O(n)

�33

https://visualgo.net/en/bst


TODAY’S LECTURE IN A NUTSHELL

Binary search trees - search

▸ Compare key with root node. Smaller? Go left. Larger? Go right. 

▸ Search hit: If found node with key you’re looking for. Return associated value. 

▸ Search miss: reached a null node. Return null. 

▸ public Value get(Key key) {  
     Node x = root;  
     while (x != null) {  
           int cmp = key.compareTo(x.key);  
           if (cmp < 0)  
                   x = x.left;  
           else if (cmp > 0)  
                   x = x.right;  
           else if (cmp == 0)  
                   return x.val;  
      }  
      return null;  
}

�34



TODAY’S LECTURE IN A NUTSHELL

Binary search trees - search

�35



TODAY’S LECTURE IN A NUTSHELL

Binary search trees - insertion

▸ Compare key with root node. Smaller? Go left. Larger? Go right. 

▸ If found node with same key, update value. 

▸ If reached a null node, insert (key,value) pair. 

▸ public void put(Key key, Value val) {  
     root = put(root, key, val);  
}  
private Node put(Node x, Key key, Value val) {  
     if (x == null)  
           return new Node(key, val, 1);  
     int cmp = key.compareTo(x.key);  
     if (cmp < 0)  
         x.left = put(x.left, key, val);  
     else if (cmp > 0)  
         x.right = put(x.right, key, val);            
     else                
         x.val = val;  
     x.size = 1 + size(x.left) + size(x.right);  
     return x;    
}

�36



TODAY’S LECTURE IN A NUTSHELL

Binary search trees - insertion

�37



TODAY’S LECTURE IN A NUTSHELL

Binary search trees - Hibbard’s deletion

▸ Search for node: 

▸ Leaf? Just delete it. 

▸ Node with one child? Delete it and replace with child. 

▸ Node with two children? Delete and replace with 
successor (smallest of the larger keys). If successor has a 
(right) child, pass it to parent.

�38



TODAY’S LECTURE IN A NUTSHELL

Binary search trees - Hibbard’s deletion

�39

   public void delete(Key key) {
       root = delete(root, key);
   }

    private Node delete(Node x, Key key) {
        if (x == null) return null;

        Int cmp = key.compareTo(x.key);
        if (cmp < 0)
            x.left  = delete(x.left,  key);
        else if (cmp > 0)  
            x.right = delete(x.right, key);
        else { 
            if (x.right == null)
                return x.left;
            if (x.left  == null)
                return x.right;
            Node t = x; //replace with successor
            x = min(t.right);
            x.right = deleteMin(t.right);
            x.left = t.left;
        } 
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }



TODAY’S LECTURE IN A NUTSHELL

Binary search trees - delete node with key 21

�40



TODAY’S LECTURE IN A NUTSHELL

Dictionaries

▸ Binary search trees 

▸ 2-3 search trees

�41



TODAY’S LECTURE IN A NUTSHELL

2-3 search trees

▸ Balanced (every path from root to leaf has same length) 
search tree that follow the symmetric order. Contain 2 
nodes (one key and two children) or 3 nodes (two keys 
and three children).  

▸ Search and insertion of keys (and values) is � . 

▸ A pain to implement. 

▸ Practice: https://www.cs.usfca.edu/~galles/visualization/
BTree.html (max-degree 3).

O(log n)

�42

https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://www.cs.usfca.edu/~galles/visualization/BTree.html


TODAY’S LECTURE IN A NUTSHELL

2-3 search trees

�43



TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces 

▸ Iterable/Iterator Interfaces 

▸ BT Traversals

�44



TODAY’S LECTURE IN A NUTSHELL

Comparable Interface

▸ Interface with a single method that we need to implement: 
public int compareTo(T that) 

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w. 

▸ Returns <0 if v is smaller than w. 

▸ Returns 0 if v is equal to w. 

▸ Corresponds to natural ordering. 

�45



TODAY’S LECTURE IN A NUTSHELL

Comparator Interface

▸ Sometimes the natural ordering is not the type of ordering we want. 

▸ Comparator is an interface which allows us to dictate what kind of ordering we want by 
implementing the method:  
public int compare(T this, T that) 

▸ Implement it so that compare(v, w):

▸ Returns >0 if v is greater than w. 

▸ Returns <0 if v is smaller than w. 

▸ Returns 0 if v is equal to w. 

‣ public static Comparator<ClassName> reverseComparator(){
return (ClassName a, ClassName b)->{return -a.compareTo(b)};  

    }

�46



TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces 

▸ Iterable/Iterator Interfaces 

▸ BT Traversals

�47



TODAY’S LECTURE IN A NUTSHELL

Iterable<T> Interface

▸ Interface with a single method that we need to implement: 
Iterator<T> iterator() 

▸ Class becomes iterable, that is it can be traversed with a 
for-each loop. 

▸ for (String student: students){  
       System.out.println(student);  
}

�48



TODAY’S LECTURE IN A NUTSHELL

Iterator<T> Interface

▸ Interface with two methods that we need to implement: boolean 
hasNext() and T next(). 

▸ hasNext() checks whether there is any element we have not seen yet. 

▸ next() returns the next available element. 

▸ Always check if there are any available elements before returning the next 
one. 

▸ Typically a comparable class, has an inner class that implements Iterator. 
Outer class’s iterator method returns an instance of inner class. 

▸ Can also be implemented in a standalone class where collection to iterate 
over is passed in the constructor.

�49



TODAY’S LECTURE IN A NUTSHELL

Misc

▸ Comparable/Comparator Interfaces 

▸ Iterable/Iterator Interfaces 

▸ BT Traversals

�50



TODAY’S LECTURE IN A NUTSHELL

BT traversals

▸ Pre-order: mark root visited, left subtree, right subtree. 

▸ In-order: left subtree, mark root visited, right subtree. 

▸ Post-order: left subtree, right subtree, mark root visited. 

▸ Level-order: start at root, mark each node as visited level 
by level, from left to right.

�51



TODAY’S LECTURE IN A NUTSHELL

Practice Problems

▸ Problem 1 - Sorting 

▸ Problem 2 - Heaps 

▸ Problem 3 - Tree traversals 

▸ Problem 4 - Binary Trees 

▸ Problem 5 - Binary Search Trees 

▸ Problem 6 - Iterators

�52



TODAY’S LECTURE IN A NUTSHELL

Problem 1 - Sorting

�53

▸ In the next slide, you can find a table whose first row (last column 0) contains an array 
of 18 unsorted numbers between 1 and 50. The last row (last column 6) contains the 
numbers in sorted order. The other rows show the array in some intermediate state 
during one of these five sorting algorithms: 

▸ 1-Selection sort 

▸ 2-Insertion sort 

▸ 3-Mergesort 

▸ 4-Quicksort (no initial shuffling, one partition only) 

▸ 5-Heapsort 

▸ Match each algorithm with the right row by writing its number (1-5) in the last column. 



TODAY’S LECTURE IN A NUTSHELL �54

12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15 0
11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15
10 11 12 46 20 43 42 47 44 32 16 35 40 18 41 21 28 15
10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46
43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47
11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15
10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47 6

Problem 1 - Sorting



TODAY’S LECTURE IN A NUTSHELL

Problem 2 - Heaps

�55

▸ Consider the following max-heap: 

�  

▸ Draw the heap after you insert key 13. 

▸ Suppose you delete the maximum key from the original 
heap. Draw the heap after you delete 14.



TODAY’S LECTURE IN A NUTSHELL

Problem 3 - Tree Traversals

�56

▸ Circle the correct binary tree(s) that would produce both of 
the following traversals: 

▸ Pre-order: C R B W O S T N Q 

▸ In-order: B R W O C S N T Q



TODAY’S LECTURE IN A NUTSHELL

Problem 4 - Binary Trees

�57

▸ You are extending the functionality of the BinaryTree class that represents binary 
trees with the goal of counting the number of leaves. Remember that BinaryTree 
has a pointer to a root Node and the inner class Node has two pointers, left and 
left to the root nodes that correspond to its left and right subtrees.  

▸ You are given the following public method: 

  public int sumLeafTree()

    return sumLeafTree(root);

  }

‣ Please fill in the body of the following recursive method  
 
private int sumLeafTree(Node x){…}



TODAY’S LECTURE IN A NUTSHELL

Problem 5 - Binary Search Trees

�58

▸ You are extending the functionality of the BST class that represents binary search trees with the 
goal of counting the number of nodes whose keys fall within a given [low, high] range. 
That is you want to count how many nodes have keys that are equal or larger than low and 
equal or smaller than high. Remember that BST has a pointer to a root Node and the inner 
class Node has two pointers, left and left to the root nodes that correspond to its left and 
right subtrees and a Comparable Key key (please ignore the value).  

▸ You are given the following public method: 

  public int countRange(Key low, Key high)

    return countRange(root, Key low, Key high);

  }

‣ Please fill in the body of the following recursive method  
 
private int countRange(Node x, Key low, Key high){…}



TODAY’S LECTURE IN A NUTSHELL

Problem 6 - Iterators

�59

▸ A programmer discovers that they frequently need only the odd numbers in an arraylist of 
integers.  As a result, they decided to write a class OddIterator that implements the 
Iterator interface. Please help them implement the constructor and the hasNext() and 
next() methods so that they can retrieve the odd values, one at a time. For example, if the 
arraylist contains the elements [7, 4, 1, 3, 0], the iterator should return the values 7, 1, and 3. 
You are given the following public class: 

public class OddIterator implements Iterator<Integer> {

// The array whose odd values are to be enumerated  
private ArrayList<Integer> myArrayList; 

//any other instance variables you might need

//An iterator over the odd values of myArrayList
public OddIterator(ArrayList<Integer> myArrayList){…}

//runs in O(n) time
public boolean hasNext(){…}
 
//runs in O(1) time  
public Integer next(){…}
}



TODAY’S LECTURE IN A NUTSHELL

Answers

▸ Solution to Problem 1 - Sorting 

▸ Solution to Problem 2 - Heaps 

▸ Solution to Problem 3 - Tree traversals 

▸ Solution to Problem 4 - Binary Trees 

▸ Solution to Problem 5 - Binary Search Trees 

▸ Solution to Problem 6 - Iterators

�60



TODAY’S LECTURE IN A NUTSHELL

Solution to Problem 1 - Sorting

�61

12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15 0
11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15 2
10 11 12 46 20 43 42 47 44 32 16 35 40 18 41 21 28 15 4
10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46 1
43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47 5
11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15 3
10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47 6



TODAY’S LECTURE IN A NUTSHELL

Solution to Problem 2 - Heaps

�62

▸ Insert key 13: 

�  

▸ Delete max-key (14): 

�



TODAY’S LECTURE IN A NUTSHELL

Solution to Problem 3 - Tree traversals

�63

▸ Pre-order: C R B W O S T N Q 

▸ In-order: B R W O C S N T Q



TODAY’S LECTURE IN A NUTSHELL

Solution to Problem 4 - Binary Trees

�64

private int sumLeafTree(Node x){

if (x == null){

return 0;

}

else if (x.left == null && x.right == null){

     return 1;  
}

else{

return sumLeafTree(x.left) + sumLeafTree(x.right);

}

}



TODAY’S LECTURE IN A NUTSHELL

Solution to Problem 5 - Binary Search Trees

�65

private int countRange(Node x, Key low, Key high){

if (x == null){

return 0;

}

if (x.key.compareTo(low)>=0 && x.key.compareTo(high)<=0){

return 1 + countRange(x.left, low, high)  + countRange(x.right, low, high);

}

else if (x.key.compareTo(low)<0){

return countRange(x.right, low, high);

}

else{

return countRange(x.left, low, high);

}

}



TODAY’S LECTURE IN A NUTSHELL

Solution to Problem 6 - Iterators

�66

public class OddIterator implements Iterator<Integer> {
 
   private ArrayList<Integer> myArrayList; 

 int counter;

 public OddIterator(ArrayList<Integer> myArrayList){
 this.myArrayList = myArrayList;

counter = 0;
 }

 //runs in O(n) time
 public boolean hasNext(){

for (int i=counter; i<myArrayList.size(); i++){
if(myArrayList.get(i)%2 == 1){

              counter = i;
return true;

}
}

     return false;
 }  

 
 //runs in O(1) time  
 public Integer next(){
 return myArrayList.get(counter++); 
 }

}



�67

GOOD LUCK! YOU CAN DO THIS!


