CSO62 DATA STRUCTURES AND ADVANCED PROGRAMMING

23: Binary Search Trees

David Kauchak
Alexandra Papoutsaki

Lecture 23: Binary Search Trees

- Dictionaries
- Binary Search Trees

Dictionaries

- Also known as: symbol tables, maps, indices, associative arrays.
- Key-value pair abstractions that support two operations:
- Insert a key-value pair.
- Given a key, search for the corresponding value.
- Supported either with built-in or external libraries by the majority of programming languages.

Basic symbol table API

- public class ST <Key extends Comparable<Key>, Value>
- ST(): create an empty symbol table. By convention, values are not null.
- void put(Key key, Value val): insert key-value pair.
- Overwrites old value with new value if key already exists.
- Value get(Key key): return value associated with key.
- Returns null if key not present.
- boolean contains(Key key): is there a value associated with key?
- Iterable keys(): all the keys in the symbol table.
- void delete(Key key): delete key and associated value.
- boolean isEmpty(): is the symbol table empty?
- int size(): number of key-value pairs.

Ordered symbol tables

	keys	values
$\min () \longrightarrow 0$	$\rightarrow 09: 00: 00$	Chicago
	09:00:03	Phoenix
	09:00:13	Houston
$\operatorname{get}(09: 00: 13)-0$	09:00:59	Chicago
	09:01:10	Houston
f100r(09:05:00) $\longrightarrow 0$	-09:03:13	Chicago
	09:10:11	Seattle
select(7) $\longrightarrow 0$	-09:10:25	Seattle
	09:14:25	Phoenix
	09:19:32	Chicago
	09:19:46	Chicago
keys(09:15:00, 09:25:00) $\longrightarrow 0$	09:21:05	Chicago
	09:22:43	Seattle
	09:22:54	Seattle
	09:25:52	Chicago
ceiling (09:30:00) $\longrightarrow 0$	-09:35:21	Chicago
	09:36:14	Seattle
$\max () \longrightarrow 0$	$\rightarrow 09: 37: 44$	Phoenix
size(09:15:00, 09:25:00) is 5 rank(09:10:25) is 7		

Ordered symbol table API

- Key min(): smallest key.
- Key max(): largest key.
- Key floor(Key key): largest key less than or equal to given key.
- Key ceiling(Key key): smallest key greater than or equal to given key.
- int rank(Key key): number of keys less that given key.
- Key select(int k): key with rank k.
, Iterable keys(): all keys in symbol table in sorted order.
, Iterable keys(int lo, int hi): keys in [lo, ..., hi] in sorted order.

Printed symbol tables are all around us

- Dictionary: key = word, value = definition.
- Encyclopedia: key = term, value = article.
- Phonebook: $k e y=$ name, value $=$ phone number.
- Math table: key = math functions and input, value $=$ function output.
- Unsupported operations:
- Add a new key and associated value.
- Remove a given key and associated value.
- Change value associated with a given key.

Lecture 23: Binary Search Trees

- Dictionaries
- Binary search Trees

Definitions

- Binary Search Tree: A binary tree in symmetric order.
- Symmetric order: Each node has a key, and every node's key is:
- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.
- Our textbook uses BSTs to implement dictionaries, therefore each node holds a key-value pair. Other implementations hold only a key.

Differences between heaps and BSTs

	Heap	BST
Used to implement	Priority queues	Dictionaries
Supported operations	Insert, delete max	insert, search, delete, ordered operations
What is inserted	Keys	Key-value pairs
Underlying data structure	(Resizing) array	Linked nodes
Tree shape	Complete binary tree	Depends on data
Ordering of keys	Heap-ordered	Symmetrically-ordered
Duplicate keys allowed?	Yes	No*
when BSTs used to implement dictionaries.		

BST representation of dictionaries

- We will use an inner class Node that is composed by:
- A Key that is comparable and a Value
- A reference to the root nodes of the left (smaller keys) and right (larger keys) subtrees.
- Potentially, the total number of nodes in the subtree that has root this node.
- ABST has a reference to a Node root.

BST and Node implementation

public class BST<Key extends Comparable<Key>, Value> \{ private Node root; // root of BST
private class Node \{
private Key key; // sorted by key
private Value val; // associated value
private Node left, right; // roots of left and right subtrees
private int size; // \#nodes in subtree rooted at this
public Node(Key key, Value val, int size) \{
this.key = key;
this.val = val;
this.size = size;
\}
\}

Search for a key

- If less than key in node go to left subtree.
- If greater than key in node go to right subtree.
- If given key and key at examined node are equal, search hit.
- Return value corresponding to given key, or null if no such key.
- In other implementations, you return the last node you reached.
- Number of compares is equal to the depth of the node +1 .

Search example

Successful (left) and unsuccessful (right) search in a BST

Search - iterative implementation

- public Value get(Key key) \{

Node x = root;
while (x ! = null) \{
int cmp = key.compareTo(x.key);
if (cmp < 0)
$x=x . l e f t ;$
else if (cmp > 0) x = x.right;
else if (cmp == 0) return x.val;
\} return null;
\}

Search - recursive implementation

' public Value get(Key key) \{ return get(root, key);
\}
p private Value get(Node x, Key key) \{
if ($x==$ null)
return null;
int cmp = key.compareTo(x.key);
if (cmp < 0)
return get(x.left, key);
else if (cmp > 0)
return get(x.right, key);
else
return x.val;
\}

Practice Time

- Search for the keys 4 and 9 in the following BST:

Insert

- If less than key in node go left.
- If greater than key in node go right.
- If null, insert.
- If already exists, update value.
- Number of compares is equal to the depth of the node +1 .

Insert example

inserting L

Insertion into a BST

Insert

, public void put(Key key, Value val) \{ root $=$ put(root, key, val);
\}
private Node put(Node x, Key key, Value val) \{
if ($x==n u l l$)
return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
if (cmp < 0)
$x . l e f t=$ put(x.left, key, val);
else if (cmp > 0)
x.right = put(x.right, key, val);
else
$\mathrm{x} . \mathrm{val}=\mathrm{val} ;$
x.size = 1 + size(x.left) + size(x.right);
return x;

Practice Time

- Add the key-value pairs $(4,3)$ and $(9,2)$ in the following BST:

3.2 Binary Search Tree Demo

Tree shape

- The same set of keys can result to different BSTs based on their order of insertion.
- Number of compares for search/insert is equal to depth of node +1 .

BSTs mathematical analysis

- If n distinct keys are inserted into a BST in random order, the expected number of compares of search/insert is $O(\log n)$.
- If n distinct keys are inserted into a BST in random order, the expected height of tree is $O(\log n)$. [Reed, 2003].
- Worst case height is n but highly unlikely.
- Keys would have to come (reversely) sorted!
- All ordered operations in a dictionary implemented with a BST depend on the height of the BST.

Hibbard deletion: Delete node which is a leaf

- Simply delete node.
- Example: delete 52 locates a node which is a leaf and removes it.

Hibbard deletion: Delete node with one child

- Delete node and replace it with its child.
- Example: delete 70 locates a node which has one child and replaces it with the child.

Hibbard deletion: Delete node with two children

- Delete node and replace it with successor (node with smallest of the larger keys). Move successor's child (if any) where successor was.
- Example: delete 50 locates a node which has two children. Successor is 51 .


```
public void delete(Key key) {
    root = delete(root, key);
}
private Node delete(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
            x.left = delete(x.left, key);
    else if (cmp > 0)
            x.right = delete(x.right, key);
    else {
            if (x.right == null)
                return x.left;
            if (x.left == null)
                return x.right;
            Node t = x; //replace with successor
            x = min(t.right);
            x.right = deleteMin(t.right);
            x.left = t.left;
    }
    x.size = size(x.left) + size(x.right) + 1;
    return x;
}
```


Practice Time

- Delete the node 21 following Hibbard's deletion

Answer

- Delete the node 21 following Hibbard's deletion

Hibbard's deletion

- Unsatisfactory solution. If we were to perform many insertions and deletions the BST ends up being not symmetric and skewed to the left.
- Extremely complicated analysis, but average cost of deletion ends up being \sqrt{n}. Let's simplify things by saying it stays $O(\log n)$.
* No one has proven that alternating between the predecessor and successor will fix this.
- Hibbard devised the algorithm in 1962. Still no algorithm for efficient deletion in Binary Search Trees!
- Overall, BSTs can have $O(n)$ worst-case for search, insert, and delete. We want to do better (see future lectures).

Lecture 23: Binary Search Trees

- Dictionaries
- Binary Search Trees

Readings:

- Textbook: Chapters 3.1 (Pages 362-386) and 3.2 (Pages 396-414)
- Website:
- https://algs4.cs.princeton.edu/31elementary/
- https://algs4.cs.princeton.edu/32bst/
, Visualization:
- https://visualgo.net/en/bst

Practice Problems:

(3.1.1-3.1.6, 3.2.1-3.2.13

