CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

22: Priority Queues and Heapsort

David Kauchak

Alexandra Papoutsaki

Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort

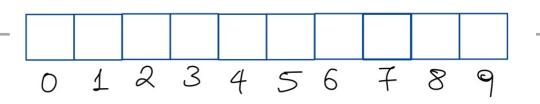
Priority Queue ADT

- Two operations:
 - Delete the maximum
 - Insert
- Applications: load balancing and interruption handling in OS, Huffman codes for compression, A* search for AI, Dijkstra's and Prim's algorithm for graph search, etc.
- How can we implement a priority queue efficiently?

Option 1: Unordered array

- The lazy approach where we defer doing work (deleting the maximum) until necessary.
- Insert is O(1) (will be implemented as push in stacks).
- Delete maximum is O(n) (have to traverse the entire array to find the maximum element).

```
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
                     // elements
   private Key∏ pq;
   private int n;  // number of elements
   // set inititial size of heap to hold size elements
   public UnorderedArrayMaxPQ(int capacity) {
       pq = (Key[]) new Comparable[capacity];
       n = 0;
   }
   public boolean isEmpty() { return n == 0; }
   public int size()
                              { return n;
   public void insert(Key x) { pq[n++] = x; }
   public Key delMax() {
       int max = 0;
       for (int i = 1; i < n; i++)
           if (less(max, i)) max = i;
       exch(max, n-1);
       return pq[--n];
   private boolean less(int i, int j) {
       return pa[i].compareTo(pa[j]) < 0;</pre>
   private void exch(int i, int j) {
       Key swap = pq[i];
       pq[i] = pq[j];
       pq[j] = swap;
   }
}
```



Practice Time

Given an empty array of capacity 10, perform the following operations in a priority queue based on an unordered array (lazy approach):

1. Insert P

7. Insert M

2. Insert Q

8. Delete max

3. Insert E

9. Insert P

4. Delete max

10. Insert L

5. Insert X

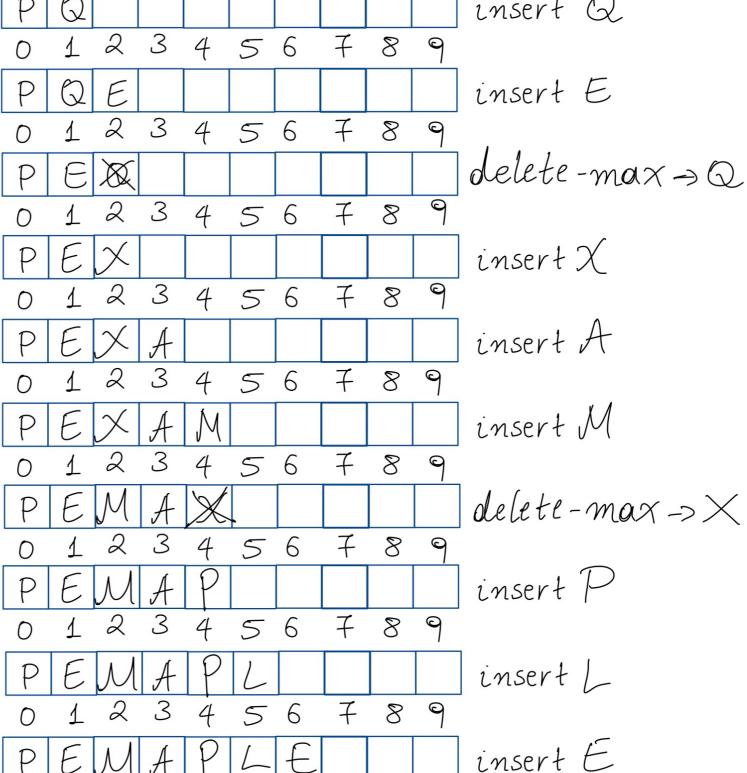
11. Insert E

6. Insert A

12. Delete max

PRIORITY QUEUE

Answer



8

8

delete-max->P

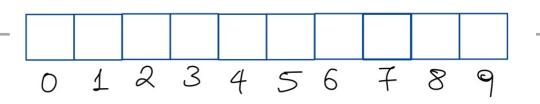
5 6

5 6

Option 2: Ordered array

- The eager approach where we do the work (keeping the list sorted) up front to make later operations efficient.
- Insert is O(n) (we have to find the index to insert and shift elements to perform insertion).
- Delete maximum is O(1) (just take the last element which will the maximum).

```
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
   private Key[] pq; // elements
                       // number of elements
   private int n;
   // set inititial size of heap to hold size elements
   public OrderedArrayMaxPQ(int capacity) {
       pq = (Key[]) (new Comparable[capacity]);
       n = 0;
   }
   public boolean isEmpty() { return n == 0; }
   public int size() { return n;
   public Key delMax() { return pq[--n]; }
   public void insert(Key key) {
       int i = n-1;
       while (i \ge 0 \&\& less(key, pq[i])) {
           pq[i+1] = pq[i];
           i--;
       pq[i+1] = key;
       n++;
   }
  private boolean less(Key v, Key w) {
       return v.compareTo(w) < 0;</pre>
   }
```



Practice Time

Given an empty array of capacity 10, perform the following operations in a priority queue based on an ordered array (eager approach):

1. Insert P

7. Insert M

2. Insert Q

8. Delete max

3. Insert E

9. Insert P

4. Delete max

10. Insert L

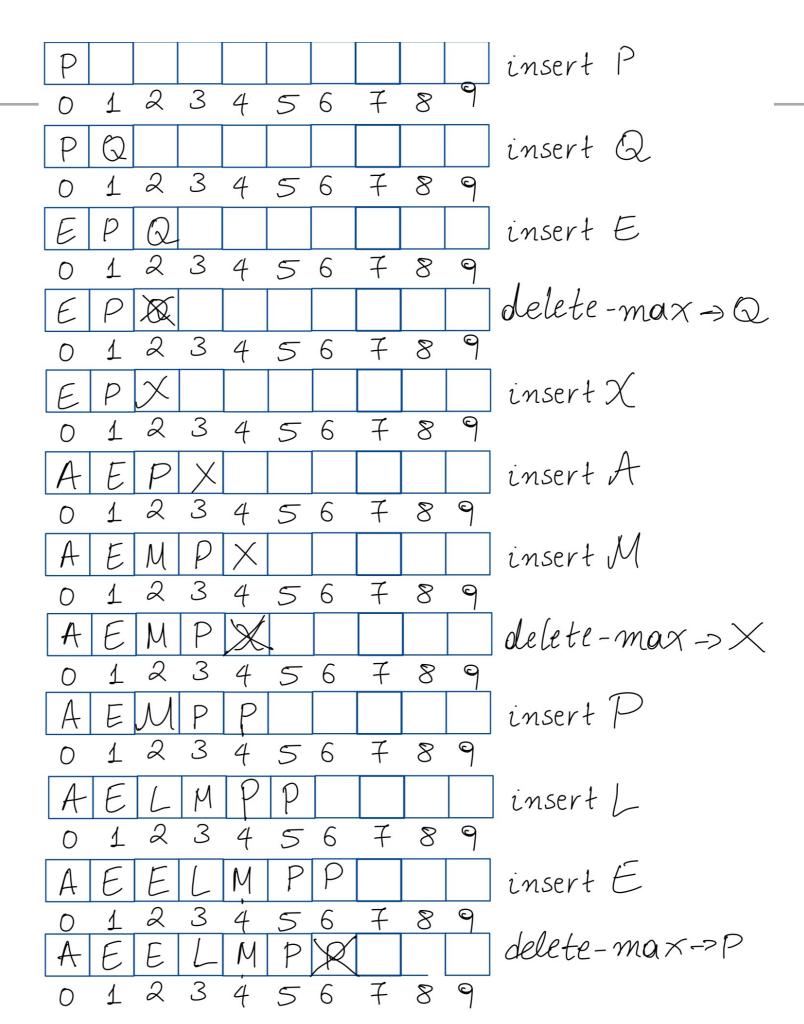
5. Insert X

11. Insert E

6. Insert A

12. Delete max

Answer



Option 3: Binary heap

- Will allow us to both insert and delete max in $O(\log n)$ running time.
- There is no way to implement a priority queue in such a way that insert and delete max can be achieved in O(1) running time.
- Priority queues are synonyms to binary heaps.

Practice Time

Given an empty binary heap that represents a priority queue, perform the following operations:

1. Insert P

7. Insert M

2. Insert Q

8. Delete max

3. Insert E

9. Insert P

4. Delete max

10. Insert L

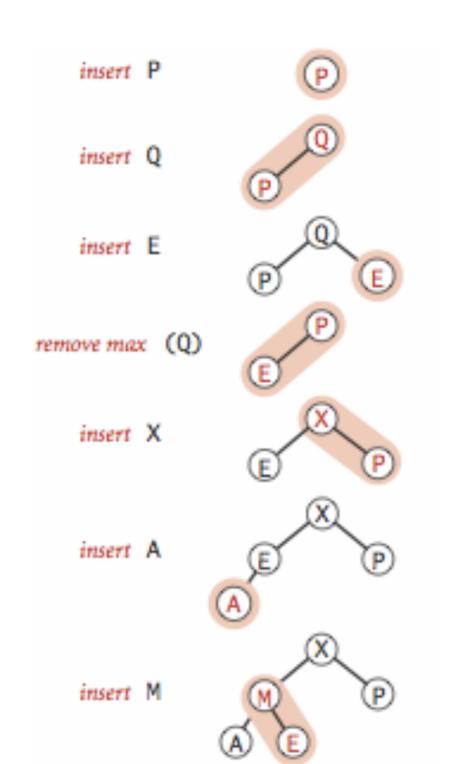
5. Insert X

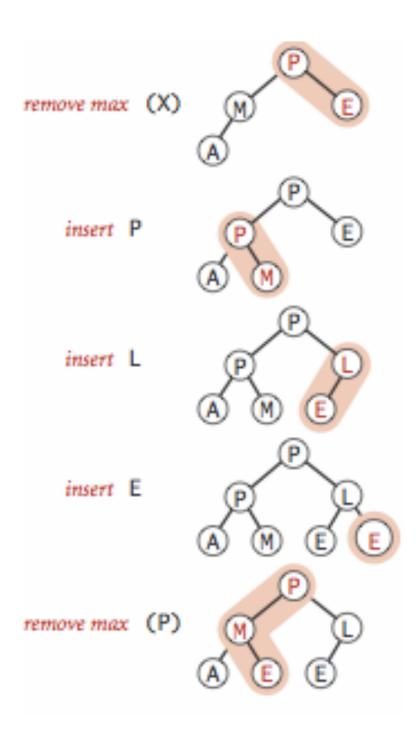
11. Insert E

6. Insert A

12. Delete max

Answer





Lecture 22: Priority Queues and Heapsort

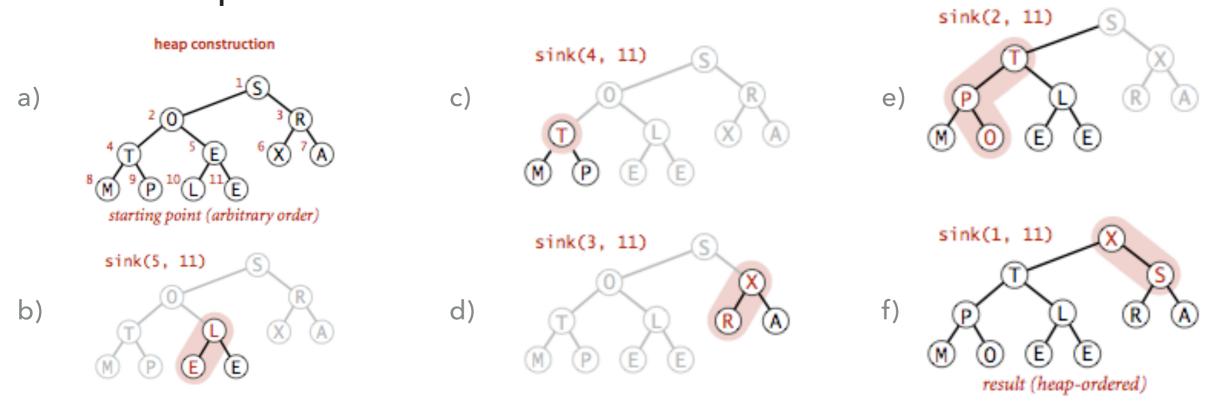
- Priority Queue
- Heapsort

Basic plan for heap sort

- Use a priority queue to develop a sorting method that works in two steps:
- ▶ 1) Heap construction: build a binary heap with all *n* keys that need to be sorted.
- Sortdown: repeatedly remove and return the maximum key.

O(n) Heap construction

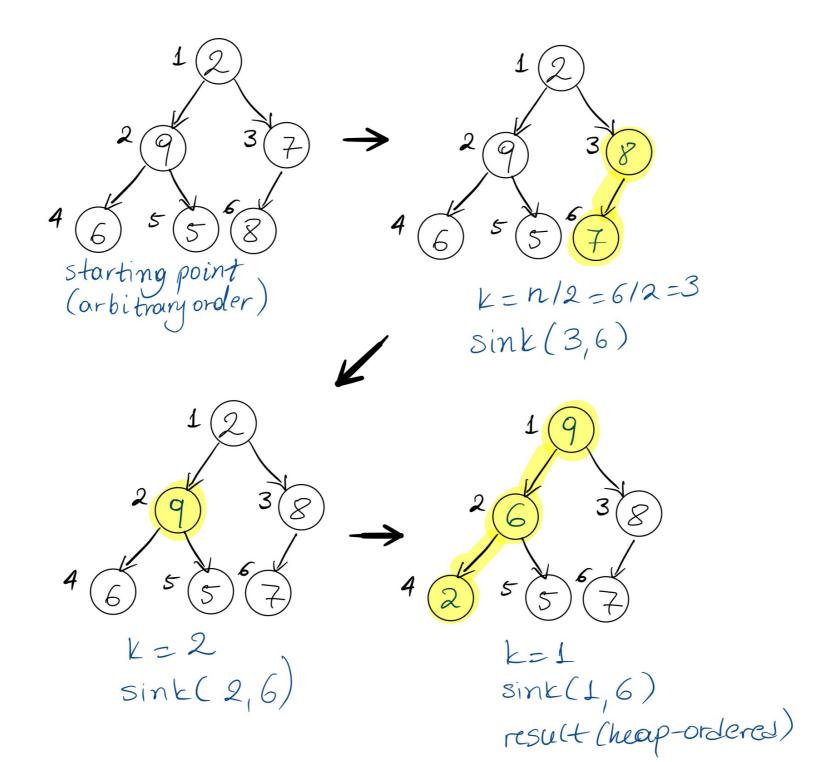
- Ignore all leaves (indices n/2+1,...,n).
- for(int k = n/2; k >= 1; k--)
 sink(a, k, n);
- Key insight: After sink(a,k,n) completes, the subtree rooted at k is a heap.



Practice Time

Run the first step of heapsort, heap construction, on the array [2,9,7,6,5,8].

Answer: Heap construction



Sortdown

Remove the maximum, one at a time, but leave in array instead of nulling out.

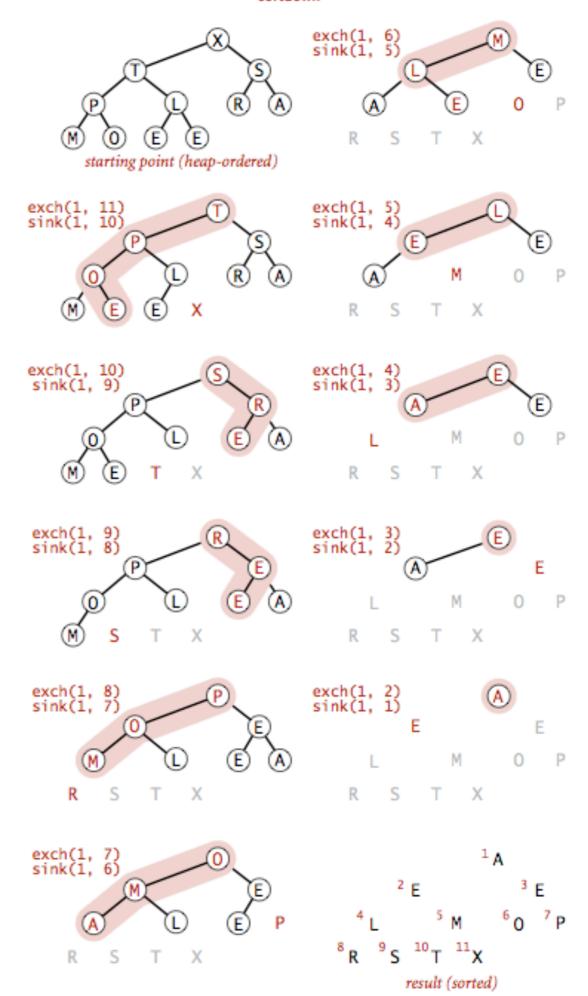
```
while(n>1){
    exch(a, 1, n--);
    sink(a, 1, n);
}
```

Key insight: After each iteration the array consists of a heap-ordered subarray followed by a sub-array in final order.

HEAPSORT

Sortdown

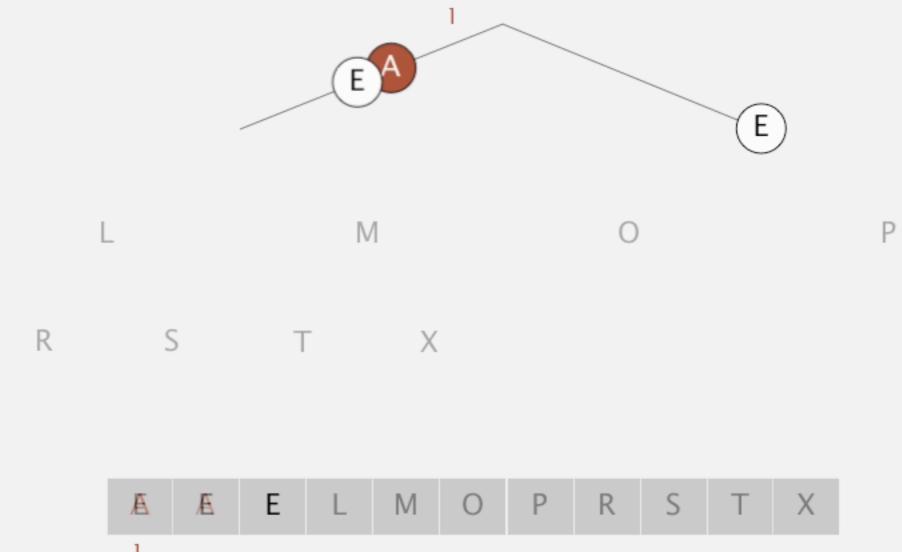
while(n>1){
 exch(a, 1, n--);
 sink(a, 1, n);
}



Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

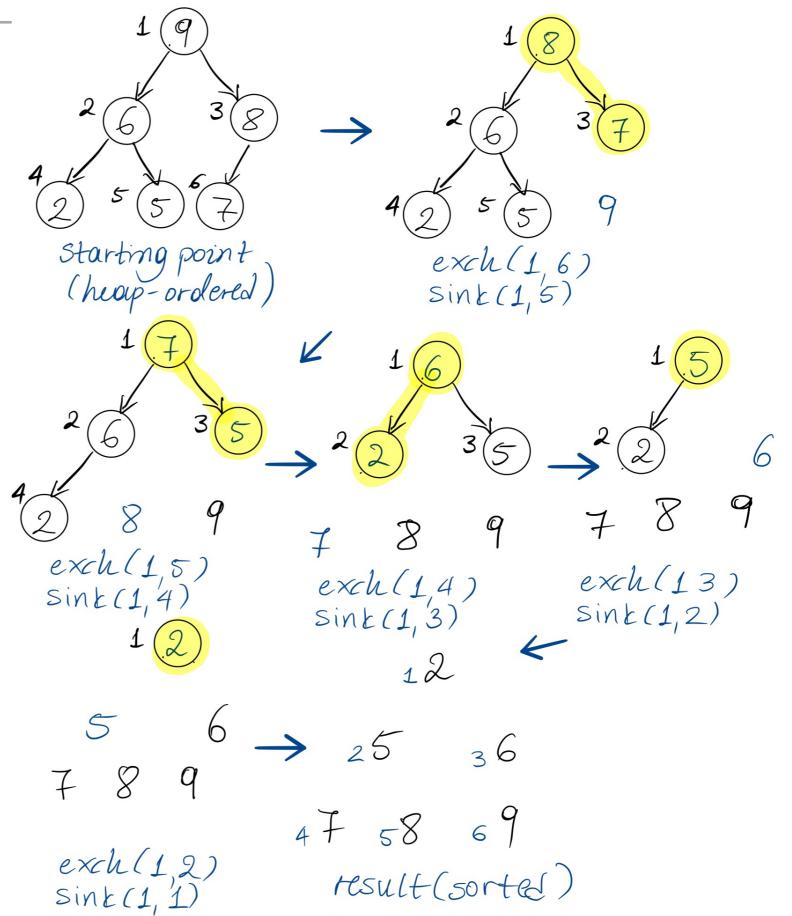
sink 1



Practice Time

• Given the heap you constructed before, run the second step of heapsort, sortdown, to sort the array [2,9,7,6,5,8].

Answer: Sortdown



Heapsort analysis

- ▶ Heap construction makes O(n) exchanges and O(n) compares.
- **Sortdown** and therefore the entire heap sort $O(n \log n)$ exchanges and compares.
- ▶ In-place sorting algorithm with $O(n \log n)$ worst-case!
- Remember:
 - mergesort: not in place, requires linear extra space.
 - quicksort: quadratic time in worst case.
- ▶ Heapsort is optimal both for time and space in terms of Big-O, but:
 - Inner loop longer than quick sort.
 - Poor use of cache.
 - Not stable.

Sorting: Everything you need to remember about it!

	Which Sort	In place	Stable	Best	Average	Worst	Remarks
	Selection	X		$O(n^2)$	$O(n^2)$	$O(n^2)$	n exchanges
	Insertion	X	X	O(n)	$O(n^2)$	$O(n^2)$	Use for small arrays or partially ordered
	Merge		X	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	Guaranteed performance; stable
	Quick	X		$O(n \log n)$	$O(n \log n)$	$O(n^2)$	$n \log n$ probabilistic guarantee; fastest!
	Неар	X		$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	Guaranteed performance; in place

Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort

Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327), 2.5 (336-344)
- Website:
 - Priority Queues: https://algs4.cs.princeton.edu/24pq/
- Visualization:
 - Create (nlogn) and heapsort: https://visualgo.net/en/heap

Practice Problems:

2.4.1-2.4.11. Also try some creative problems.