
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

12: Sorting Fundamentals

Alexandra Papoutsaki
Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

David Kauchak

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Sorting Fundamentals

▸ Introduction

▸ Selection sort

▸ Insertion sort

�2

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION

Why study sorting?

▸ It’s more common than you think: e.g., sorting flights by
price, contacts by last name, files by size, emails by day
sent, neighborhoods by zipcode, etc.

▸ Good example of how to compare the performance of
different algorithms for the same problem.

▸ Some sorting algorithms relate to data structures.

▸ Sorting your data will often be a good starting point when
solving other problems (keep that in mind for interviews).

INTRODUCTION

Definitions

▸ Sorting: the process of arranging � items of a collection in
non-decreasing order (e.g., numerically or alphabetically).

▸ Key: assuming that an item consists of multiple
components, the key is the property based on which we
sort items.

▸ Examples: items could be books and potential keys are
the title or the author which can be sorted alphabetically
or the ISBN which can be sorted numerically.

n

INTRODUCTION

Total order

▸ Sorting is well defined if and only if there is total order.

▸ Total order: a binary relation � on a set � that satisfies the
following statements for all �, � , and � in � :

▸ Connexity: � or � .

▸ Transitivity: for all �, � , �, if � and � then � .

▸ Antisymmetry: if both � and � , then � .

≤ C
v w x C

v ≤ w w ≤ v

v w x v ≤ w w ≤ x v ≤ x

v ≤ w w ≤ v v = w

INTRODUCTION

How many different algorithms for sorting can there be?

▸ Adaptive
heapsort

▸ Bitonic sorter

▸ Block sort

▸ Bubble sort

▸ Bucket sort

▸ Cascade
mergesort

▸ Cocktail sort

▸ Comb sort

▸ Flashsort

▸ Gnome sort

▸ Heapsort

▸ Insertion sort

▸ Library sort

▸ Mergesort

▸ Odd-even sort

▸ Pancake sort

▸ Quicksort

▸ Radixsort

▸ Selection sort

▸ Shell sort

▸ Spaghetti sort

▸ Treesort

▸ …

INTRODUCTION

Rules of the game - Comparing

▸ We will be sorting arrays of � items, where each item
contains a key. In Java, objects are responsible in telling us
how to naturally compare their keys.

▸ Let’s say we want to sort an array of objects of type T.

▸ Our class T should implement the Comparable interface
(more on this in a few lectures). We will need to implement
the compareTo method to satisfy a total order.

n

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

INTRODUCTION

Rules of the game - Comparing

▸ public int compareTo(T that)

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w.

▸ Returns <0 if v is smaller than w.

▸ Returns 0 if v is equal to w.

▸ Java classes such as Integer, Double, String, File all
implement Comparable.

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

INTRODUCTION

Two useful abstractions

▸ We will refer to data only through comparisons and exchanges.

▸ Less: Is v less than w?

 private static boolean less(Comparable v, Comparable w) {
 return v.compareTo(w) < 0;
 }

▸ Exchange: swap item in array a[] at index i with the one at
index j.  
private static void exch(Comparable[] a, int i, int j) {  
 Comparable swap = a[i]; 
 a[i]=a[j];  

 a[j]=swap;  
}

INTRODUCTION

Rules of the game - Cost model

▸ Sorting cost model: we count compares and exchanges. If
a sorting algorithm does not use exchanges, we count
array accesses.

▸ There are other types of sorting algorithms where they are
not based on comparisons (e.g., radixsort). We will not see
these in CS62 but stay tuned for CS140.

INTRODUCTION

Rules of the game - Memory usage

▸ Extra memory: often as important as running time. Sorting
algorithms are divided into two categories:

▸ In place: use constant or logarithmic extra memory,
beyond the memory needed to store the items to be
sorted.

▸ Not in place: use linear auxiliary memory.

INTRODUCTION

Rules of the game - Stability

▸ Stable: sorting algorithms that sort repeated elements in
the same order that they appear in the input.

https://en.wikipedia.org/wiki/Sorting_algorithm#/media/File:Sorting_stability_playing_cards.svg

https://en.wikipedia.org/wiki/Sorting_algorithm#/media/File:Sorting_stability_playing_cards.svg

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Sorting Fundamentals

▸ Introduction

▸ Selection sort

▸ Insertion sort

�13

SELECTION SORT

Selection sort

▸ Divide the array in two parts: a sorted subarray on the left and an
unsorted on the right.

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 44 38 5 47 3 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 44 38 5 47 3 36 26

1 44 38 5 47 3 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 44 47 38

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 44 47 38

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 44 47 38

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 47 44

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 47 44

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 38 47 44

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort

public static void sort(Comparable[] a) {

 }

SELECTION SORT

Selection sort

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (less(a[j], a[min]))
 min = j;
 }
 exch(a, i, min);
 }
 }
▸ Invariants: At the end of each iteration i:

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i]

▸ no entry in a[i+1…n-1] is smaller than any entry in a[0…i]

� In iteration i←

� Find the index min of the
smallest remaining array
←

� swap a[i] and a[min]←

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (less(a[j], a[min]))
 min = j;
 }
 exch(a, i, min);
 }
 }
▸ Comparisons: � ~� , that is � .

▸ Exchanges: � or � , making it useful when exchanges are expensive.

▸ Running time is quadratic, even if input is sorted.

▸ In-place, requires almost no additional memory.

▸ Not stable, think of the array [5_a, 3, 5_b, 1] which will end up as [1, 3, 5_b, 5_a].

1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

n O(n)

SELECTION SORT

Practice Time

‣ Using selection sort, sort the array with elements
[12,10,16,11,9,7].

‣ Visualize your work for every iteration of the algorithm.

SELECTION SORT

Answer

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Sorting Fundamentals

▸ Introduction

▸ Selection sort

▸ Insertion sort

�44

INSERTION SORT

Insertion sort

▸ Keep a partially sorted subarray on the left and an unsorted subarray on
the right

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray and insert it
there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 44 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

3 38 44 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 5 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 5 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 5 38 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 5 38 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 1 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 1 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 1 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 1 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 1 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 1 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 1 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 1 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 36 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 36 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 36 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 36 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 26 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 26 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 26 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 26 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

INSERTION SORT

In case you didn’t get this…

‣ https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U

INSERTION SORT

Insertion sort

public static void sort(Comparable[] a) {

 }

INSERTION SORT

Insertion sort

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(less(a[j], a[j-1]))
 exch(a, j, j-1);
 else
 break;
 }
 }
 }
▸ Invariants: At the end of each iteration i:

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i]

INSERTION SORT

Insertion sort: mathematical analysis for worst-case

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(less(a[j], a[j-1]))
 exch(a, j, j-1);
 else
 break;
 }
 }
 }
▸ Comparisons: � ~� , that is � .

▸ Exchanges: � ~� , that is � .

▸ Worst-case running time is quadratic.

▸ In-place, requires almost no additional memory.

▸ Stable

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

INSERTION SORT

Insertion sort: average and best case

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(less(a[j], a[j-1]))
 exch(a, j, j-1);
 else
 break;
 }
 }
 }
▸ Average case: quadratic for both comparisons and exchanges ~� when sorting a

randomly ordered array.

▸ Best case: � comparisons and � exchanges for an already sorted array.

n2/4

n − 1 0

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

INSERTION SORT

Practice Time

‣ Using insertion sort, sort the array with elements
[12,10,16,11,9,7].

‣ Visualize your work for every iteration of the algorithm.

INSERTION SORT

Answer

 https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort
https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Sorting Fundamentals

▸ Introduction

▸ Selection sort

▸ Insertion sort

�108

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 2.1 (pages 244–262)

▸ Website:

▸ Elementary sorts: https://algs4.cs.princeton.edu/21elementary/

▸ Code: https://algs4.cs.princeton.edu/21elementary/Selection.java.html and  
https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

�109

Practice Problems:

▸ 2.1.1-2.1.8

https://algs4.cs.princeton.edu/21elementary/
https://algs4.cs.princeton.edu/21elementary/Selection.java.html
https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

