
CS 62
Spring 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 9: More Sorting

Assignment 3

• What to do when you want to sort data that cannot fit in
memory of your computer?
• On-disk sorting

• Break data into chunks that will fit in memory, sort chunks,
copy into new files: 0.tempfile, 1.tempfile , …

• Keep ArrayList of files
• Merge files together until one big sorted file.
• Note: You can’t keep file open as both read and write!

2

Assignment 3 and Lab 3

• Read info on File I/O in Java and file systems in appendix to
assignment.

• See on-line Streams cheat sheet

• Lab 3: More complexity/timing (sorting)

3

Review: Selection Sort

• Goal: sort an array of numbers in non-descending order
• Find smallest element, put it first, sort the rest
• Live code example

4

Selection Sort correctness

𝑃(𝑛): ∀𝑛 ≥ 0, after running selectionSort(b,n), b[0..n] contains the
𝑛 + 1 smallest elements sorted in non-descending order.
Base Case: 𝑖 = 0

selectionSort skips the recursive call, finds the minimum element of array
b, and puts that element in b[0]. So the one element array b[0..0]
contains the 1st smallest element (and is trivially in non-descending order)

Induction Case: ∀𝑖 > 0, 𝑃 𝑖 − 1 ⇒ 𝑃(𝑖)
Since 𝑖 > 0, the first thing selectionSort(b,i) does is recursively call
selectionSort(b,i-1). By assumption, when that returns b[0..i-1]
contains the 𝑖 smallest elements sorted in non-descending order.
selectionSort then finds the minimum element in b[i..] (which would
have to be the 𝑖 + 1 th smallest element) and swaps it with the element
currently in index 𝑖. So b[0..i] now contains the 𝑖 + 1 	smallest elements
of b and, since the first b[0..i-1] contains the 𝑖 smallest, these 𝑖 + 1
elements must be sorted in ascending order.

5

Selection Sort Complexity

To compute the running time of this algorithm, we need to
count the number of comparisons in each recursive call
All of the comparison are in indexOfMin(b,i)

that makes 𝑛 − 𝑖 comparisons

So selectionSort makes 𝑛	 +	(𝑛 − 1) 	+	…	+ 	2	 + 	1
comparisons

Selection sort takes time 5 567
8

= 𝑂(𝑛8)

6

FastPower

𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑛) algorithm to calculate 𝑥5:
• if 𝑛 == 0 then return 1
• if 𝑛 is even, return 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥8, 5 8⁄)
• if 𝑛 is odd, return 𝑥 ∗ 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑛 − 1)

7

FastPower – Proof by strong induction

Base case: 𝑛 = 0
• 𝑥D = 1 and 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, 0)= 1
• Assume 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑗) is 𝑥F for all j ≤ 𝑘.
• Show 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑘 + 1) is 𝑥D67

• Case: 𝑘 + 1 is even
• 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑘 + 1)= 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, (𝑘 + 1)/2)= (𝑥8)(D67)/8 =

𝑥D67

• Case: 𝑘 + 1 is odd
• 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟 (𝑥, 𝑘 + 1)= 𝑥 ∗ 𝑓𝑎𝑠𝑡𝑃𝑜𝑤𝑒𝑟(𝑥, 𝑘) = 𝑥 ∗ 𝑥D = 𝑥D67

8

Merge Sort

• Example of Divide & Conquer algorithm
• Divide array in half
• Sort each half
• Merge halves together into completely sorted array

• Needs extra space (not in-place)
• Stable: two objects with equal keys appear in the same order

in sorted output as they appear in the input unsorted array.

9

MergeSort

/**
* MergeSort Sorts data >= low and < high
* @param list data to be sorted
* @param low start of the data to be sorted
* @param high end of the data to be sorted (exclusive)
*/
private void mergeSort(int[] data, int low, int high){

if(high-low > 1){
int mid = low + (high-low)/2;
mergeSort(data, low, mid);
mergeSort(data, mid, high);
merge(data, low, mid, high);

}
}

10

/** Merge data >= low and < high into sorted data.
* Data >= low and < mid are in sorted order.
* Data >= mid and < high are also in sorted order
*/
public void merge(int[] data, int low, int mid, int high){
// make temporary array temp of size high-low
int k = 0, i = low, j = mid;
while(i < mid && j < high){

if(data[i] <= data[j]){
temp[k] = data[i];
i++;

}else{
temp[k] = data[j];
j++;

}
k++;

}
// copy over the remaining data on the low to mid side if there is some remaining.
// copy over the remaining data on the mid to high side if there is some remaining.
// Only one of these two while loops should actually execute
// copy the data back from temp to array

11

Example

Sort: 85 24 63 45 17 31 96 50 (whiteboard)

12

Correctness

• 𝑃(𝑛): If ℎ𝑖𝑔ℎ	 − 	𝑙𝑜𝑤	 = 	𝑛		then 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡(𝑑𝑎𝑡𝑎, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ)	will
result in 𝑑𝑎𝑡𝑎[𝑙𝑜𝑤	. . ℎ𝑖𝑔ℎ]	being correctly sorted
• For simplicity, assume 𝑚𝑒𝑟𝑔𝑒	is correct
• Assume 𝑃(𝑘)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑘	 < 	𝑛, show 𝑃(𝑛)
• If 𝑛 = 0	or 1 then (correctly) do nothing
• Assume 𝑛	 > 	1
• Call 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡(𝑑𝑎𝑡𝑎, 𝑙𝑜𝑤,𝑚𝑖𝑑) and 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡(𝑑𝑎𝑡𝑎,𝑚𝑖𝑑 + 1, ℎ𝑖𝑔ℎ)

where 𝑚𝑖𝑑	 = 	𝑙𝑜𝑤	 +	(ℎ𝑖𝑔ℎ	 − 	𝑙𝑜𝑤)/2.
• Hence 𝑚𝑖𝑑 − 𝑙𝑜𝑤	 < 	𝑛, ℎ𝑖𝑔ℎ − 𝑚𝑖𝑑 + 1 < 	𝑛
• By induction 𝑑𝑎𝑡𝑎[𝑙𝑜𝑤. .𝑚𝑖𝑑] and 𝑑𝑎𝑡𝑎[𝑚𝑖𝑑 + 1	. . ℎ𝑖𝑔ℎ]	now sorted.
• call 𝑚𝑒𝑟𝑔𝑒(𝑑𝑎𝑡𝑎, 𝑙𝑜𝑤,𝑚𝑖𝑑, ℎ𝑖𝑔ℎ) and, by assumption on 𝑚𝑒𝑟𝑔𝑒,

𝑑𝑎𝑡𝑎[𝑙𝑜𝑤	. . ℎ𝑖𝑔ℎ]	now sorted! Thus 𝑃(𝑛) true.

13

Complexity

• Claim: 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡	is 𝑂 𝑛 log 𝑛
• where log	is base 2

• Merge of two lists of combined size 𝑛 takes
≤ 𝑛 − 1	comparisons.

14

Complexity

• 𝑃(𝑚): if data has 2W elements then 𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡	makes
< 𝑚	 ∗	2W	total comparisons.

• Assume 𝑃(𝑘)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑘	 < 	2W. Prove 𝑃(𝑚)
• 𝑃(0), 𝑃(1) clear. Show 𝑃 𝑚
• Sort first half, second half, and then merge
• Each half has size 8Y 8⁄ = 2WZ7 < 2W, so by induction, each

takes < 𝑚 − 1 ∗ 2WZ7	comparisons
• Therefore total number of comparisons in 𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡

< 𝑚 − 1 ∗ 2WZ7 + 𝑚 − 1 ∗ 2WZ7 + 2W − 1
= 𝑚 − 1 ∗ 2W + 2W − 1 = 𝑚 ∗ 2W − 1 < 𝑚 ∗ 2W

• Thus 𝑃(𝑚)	is true
• If 𝑛 = 2W then 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡	takes 𝑛 log 𝑛	comparisons (𝑚	 = 	log	𝑛).

15

