
CS 62
Spring 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 41: Design Patterns



Patterns in Architecture

A Pattern Language: Towns, Buildings, Construction (1977) -
Christopher Alexander, Sara Ishikawa, and Murray Silverstein

“Each pattern describes a problem which occurs over and over again in 
our environment, and then describes the core of the solution to that 
problem, in such a way that you can use this solution a million times over, 
without ever doing it the same way twice" 

"Each pattern is a three-part rule, which expresses a relation between a 
certain context, a problem, and a solution" 

"Patterns are not a complete design method; they capture important 
practices of existing methods and practices uncodified by 
conventional methods” - James Coplien

2



Software Design Patterns

• Experimentation with applying patterns to programming during 
the late 80s

• Popularized by the Gang of Four (GoF) book:
• Gamma, Helm, Johnson, Vlissides (1995).

Design Patterns: Elements of Reusable Object-Oriented Software.

3



What are design patterns?

• Design pattern is a problem & solution in context
• Design patterns capture software architectures and designs
• Not code reuse
• Instead solution/strategy reuse
• Sometimes interface reuse

• Goals:
• To support reuse, of

• Successful designs
• Existing code (though less important)

• To facilitate software evolution
• Add new features easily, without breaking existing ones

• Reduce implementation dependencies between elements of 
software system.

4



Design Pattern structure

• Pattern Name
• Problem statement - context where it might be applied
• Solution - elements of the design, their relations, 

responsibilities, and collaborations.
• Template of solution

• Consequences: Results and trade-offs

• https://sourcemaking.com/design_patterns

5



Classification

1. Creational Design Patterns
• concern the process of object creation

2. Structural Design Patterns
• deal with the composition of classes or objects

3. Behavioral Design Patterns
• characterize the ways in which classes or objects interact and 

distribute responsibility

6



Creational Patterns

• Abstract Factory/Method
Creates an instance of several derived/families of classes

• Builder
Separates object construction from its representation

• Prototype
A fully initialized instance to be copied or cloned

• Singleton
A class of which only a single instance can exist

7



Builder

• Intent
Separate the construction of a complex object from its 
representation so that the same construction process can 
create different representations.

• Problem
An application needs to create the elements of a complex 
aggregate.

• Example
Ordering meals

8



Prototype

• Intent
Avoid the inherent cost of creating objects with new

• Problem
Application "hard wires" the class of object to create in each 
"new" expression.

• Examples
Chess initialization

9



Singleton

• Intent
Ensure a class has only one instance, and provide a global 
point of access to it.

• Problem
Application needs one, and only one, instance of an object.

• Example
• US President
• Java.lang.System

10



Structural Patterns

• Adapter
Match interfaces of different classes

• Bridge
Separates an object's interface from its implementation

• Composite
A tree structure of simple and composite objects

• Decorator
Add responsibilities to objects dynamically

• Facade
A single class that represents an entire subsystem

• Flyweight
A fine-grained instance used for efficient sharing

• Proxy
An object representing another object

11



Decorator

• Intent
Attach additional responsibilities to an object dynamically. 
Decorators provide a flexible alternative to subclassing for 
extending functionality.

• Problem
You want to add behavior or state to individual objects at 
run-time. Inheritance is not feasible because it is static and 
applies to an entire class.

• Solution
Enclose the component in another object that adds the 
responsibility/capability
The enclosing object is called a decorator. 

12



Decorator

• A decorator forwards requests to its encapsulated 
component and may perform additional actions before or 
after forwarding.

• Can nest decorators recursively, allowing unlimited added 
responsibilities.

• Can add/remove responsibilities dynamically

13



Decorator Pattern Consequences

• Advantages:
• fewer classes than with static inheritance 
• dynamic addition/removal of decorators
• keeps root classes simple

• Disadvantages
• proliferation of run-time instances
• abstract Decorator must provide common interface

• Tradeoffs: 
• useful when components are lightweight

14



Decorator examples

• Pizza topings
• Java I/O
• FileReader frdr= new FileReader(filename); 

LineNumberReader lrdr = new LineNumberReader(frdr); 
String line;
line = lrdr.readLine();
while (line != null){ 

System.out.print(lrdr.getLineNumber() + ":\t" + 
line);

line = lrdr.readLine()
} 

15



Behavioral Patterns

• Chain of responsibility
A way of passing a request between a chain of objects

• Command
Encapsulate a command request as an object

• Interpreter
A way to include language elements in a program

• Iterator
Sequentially access the elements of a collection

• Mediator
Defines simplified communication between classes

• Memento
Capture and restore an object's internal state

• Null Object
Designed to act as a default value of an object

• Observer
A way of notifying change to a number of classes

• State
Alter an object's behavior when its state changes

• Strategy
Encapsulates an algorithm inside a class

• Template method
Defer the exact steps of an algorithm to a subclass

• Visitor
Defines a new operation to a class without change 16



Observer

• Intent
Define a one-to-many dependency between objects so that when 
one object changes state, all its dependents are notified and 
updated automatically.

• Problem
Objects that depend on a certain subject must be made aware of 
when that subject changes.

• Example
• Receives an event, changes its local state, etc. 
• These objects should not depend on the implementation details of the 

subject
• They just care about how it changes, not how it’s implemented. 

17



Observer Pattern

• Subject is aware of its observers (dependents)
• Observers are notified by the subject when something 

changes, and respond as necessary
• Examples: Java event-driven programming

• Subject
• Maintains list of observers
• Defines a means for notifying them when something happens

• Observer - Defines the means for notification (update)

18



Observer Pattern

class Subject {
private Observer[] observers;
public void addObserver(Observer newObs){... } public 

void notifyAll(Event evt){
forall obs in observers do

obs.process(this,evt)}
}

class Observer {
public void process(Subject sub, Event evt) { ... 

code to respond to event ... 
}

}

19



Observer Pattern Consequences

• Low coupling between subject and observers 
• Subject indifferent to its dependents; can add or remove them at 

runtime

• Support for broadcasting
• Updates may be costly
• Subject not tied to computations by observers

20



Iterator

• Intent
Provide a way to access the elements of an aggregate object 
sequentially without exposing its underlying representation.

• Problem
Need to "abstract" the traversal of wildly different data structures 
so that algorithms can be defined that are capable of interfacing 
with each transparently.

• Solution
Aggregate returns an instance of an implementation of Iterator 
interface to control iteration.

21



Iterator

• Consequences:
• Support different and simultaneous traversals
• Multiple implementations of Iterator interface
• One traversal per Iterator instance

• Requires coherent policy on aggregate updates
• Invalidate Iterator by throwing an exception, or
• Iterator only considers elements present at its creation

22



Designing with Patterns

• How do you know which patterns to use?
• What if you choose the wrong pattern?
• I.e. your code doesn't evolve the way you thought it would. 

• What if all your work to make things extensible via patterns 
never pays off?
• I.e. your code doesn't change in the way you thought it would.

• Choosing the right pattern implies prognostication 

23



Designing with Patterns

• Some design patterns are immediately useful
• Observer, Decorator

• Some are not immediately useful, but you think they might 
be
• You anticipate changing things later – prognostication

• Recently popular philosophy: XP (now called agile)
• Design for your immediate needs
• When needs change, redesign your code to match
• Use extensive testing to validate frequent changes

24


