Lecture 37: Graphs III

CS 62
Spring 2018
Alexandra Papoutsaki \& William Devanny

DFS/BFS traversal

- Can be performed in $O(n+m)$, where $n=|V|, m=|E|$
- Can:
- Test if G is connected
- If traversal visited all vertices, then graph is connected
- Compute a spanning tree of G, if G is connected
- Find a path between two vertices, if it exits
- Compute the connected components of G (needs to loop over all vertices and run DFS/BFS again)

Connectivity in Digraphs

- reachable vertices: when there is a directed path from one to another.
- strongly connected vertices: if mutually reachable
- strongly connected digraph: directed path from every vertex to every other vertex
- weakly connected graph: a digraph that would be connected if all of its directed edges were replaced by undirected edges.

Testing connectivity

- For an undirected graph:
- Run DFS/BFS from any vertex without restarting and see if all vertic es are marked
- For strong connectivity on a directed graph:
- 1. Initialize all vertices are not visited
- 2. Run DFS/BFS from an arbitrary vertex v.
- If traversal does not visit all vertices return false
- 3. Reverse all edges
- 4. Start from same vertex v and perform DFS/BFS. Graph is strongly connected iff all vertices are marked as visited again.

Single Source Shortest Path Problem

- From a starting node s, find the shortest path (and its length) to all other (reachable) nodes
- The collection of all shortest paths form a tree, called... the shortest path tree!
- If all edges have the same weight, we can use BFS.
- Otherwise ...

Single Source Shortest Path Problem

- If all edges have weights ≥ 0 then use Dijkstra's algorithm
- Essentially BFS with priority queue
- Priorities are best known distance to a node from s
- We can keep track of parent nodes to get shortest path
- Example of a greedy algorithm

Dijkstra's algorithm (1956) pseudocode

```
Q = {}; //set with unvisited vertices
for(every vertex v in V) {
    dist[v] = Infinity;
    parents[v] = null;
    Q.add(v);
}
    dist[s] = 0;
    while (!Q.isEmpty()) {
        u = vertex in Q with min dist[u];
        Q.remove(u);
        for(every edge (u,v)) {
            tentative = dist[u] + weight(u,v);
            if (tentative < dist[v]) {
                dist[v] = tentative;
                parents[v] = u;
            }
        }
    }
```


Dijkstra's algorithm (1984) pseudocode

```
Q = new PriorityQueue();
for(every vertex v in V) {
    dist[v] = Infinity;
    parents[v] = null;
    Q.addWithPriority(v,dist[v]);
}
    dist[s] = 0;
    Q.addWithPriority(s, 0);
    while (!Q.isEmpty()) {
        u = Q.extractmin();
        Q.remove(u);
        for(every edge (u,v)) {
            tentative = dist[u] + weight(u,v);
            if (tentative < dist[v]) {
            dist[v] = tentative;
            parents[v] = u;
            Q.reducePriority(v, tentative);
            }
        }

\section*{Run-time of Dijkstra}
- Adding and removing from priority queue: \(O(\log n)\) - Each goes on and off once, so \(O(n \log n)\)
- reduce_priority: \(O(\log n)\)
- Worst case, once for each edge, so \(O(m \log n)\)
- Total time: \(O((m+n) \log n)\)

Dijkstra on sample graph


\section*{Dijkstra on sample graph}
\begin{tabular}{lllllllll}
\hline & \(\mathbf{A}\) & \(\mathbf{B}\) & \(\mathbf{C}\) & \(\mathbf{D}\) & \(\mathbf{E}\) & \(\mathbf{F}\) & \(\mathbf{G}\) & \(\mathbf{H}\) \\
\hline Init & \(0_{A}\) & \(\infty\) \\
A & \(0_{A}\) & \(8_{A}\) & \(2_{A}\) & \(5_{A}\) & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) \\
C & \(0_{A}\) & \(8_{A}\) & \(2_{A}\) & \(4_{C}\) & \(7_{C}\) & \(\infty\) & \(\infty\) & \(\infty\) \\
D & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(10_{D}\) & \(7_{D}\) & \(\infty\) \\
E & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(10_{D}\) & \(6_{E}\) & \(\infty\) \\
B & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(10_{D}\) & \(6_{E}\) & \(\infty\) \\
G & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(8_{G}\) & \(6_{E}\) & \(12_{E}\) \\
\hline F & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(8_{G}\) & \(6_{E}\) & \(11_{F}\) \\
\hline H & \(0_{A}\) & \(6_{D}\) & \(2_{A}\) & \(4_{C}\) & \(5_{D}\) & \(8_{G}\) & \(6_{E}\) & \(11_{F}\) \\
\hline
\end{tabular}

Follow the subscripts to find shortest path from start to any vertex

\section*{Practice Time}
```

