
CS 62
Spring 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 37: Graphs III

DFS/BFS traversal

• Can be performed in 𝑂(𝑛 + 𝑚), where 𝑛 = |𝑉|,𝑚 = |𝐸|
• Can :
• Test if 𝐺	is connected

• If traversal visited all vertices, then graph is connected

• Compute a spanning tree of 𝐺, if 𝐺 is connected
• Find a path between two vertices, if it exits
• Compute the connected components of 𝐺

(needs to loop over all vertices and run DFS/BFS again)

2

Connectivity in Digraphs

• reachable vertices: when there is a directed path from one to
another.

• strongly connected vertices: if mutually reachable
• strongly connected digraph: directed path from every vertex to

every other vertex
• weakly connected graph: a digraph that would be connected if

all of its directed edges were replaced by undirected edges.

3

Testing connectivity

• For an undirected graph:
• Run DFS/BFS from any vertex without restarting and see if all vertic

es are marked

• For strong connectivity on a directed graph:
• 1. Initialize all vertices are not visited
• 2. Run DFS/BFS from an arbitrary vertex 𝑣.

• If traversal does not visit all vertices return false

• 3. Reverse all edges
• 4. Start from same vertex 𝑣	and perform DFS/BFS. Graph is

strongly connected iff all vertices are marked as visited again.

4

Single Source Shortest Path Problem

• From a starting node s, find the shortest path (and its length)
to all other (reachable) nodes
• The collection of all shortest paths form a tree, called...
the shortest path tree!
• If all edges have the same weight, we can use BFS.
• Otherwise …

5

Single Source Shortest Path Problem

• If all edges have weights ≥ 0 then use Dijkstra’s algorithm
• Essentially BFS with priority queue
• Priorities are best known distance to a node from s
• We can keep track of parent nodes to get shortest path
• Example of a greedy algorithm

6

Dijkstra’s algorithm (1956) pseudocode

Q = {}; //set with unvisited vertices

for(every vertex v in V) {

dist[v] = Infinity;

parents[v] = null;

Q.add(v);

}

dist[s] = 0;

while (!Q.isEmpty()) {

u = vertex in Q with min dist[u];

Q.remove(u);

for(every edge (u,v)) {

tentative = dist[u] + weight(u,v);

if (tentative < dist[v]) {

dist[v] = tentative;

parents[v] = u;

}

}

}
7

Dijkstra’s algorithm (1984) pseudocode

Q = new PriorityQueue();

for(every vertex v in V) {

dist[v] = Infinity;

parents[v] = null;

Q.addWithPriority(v,dist[v]);

}

dist[s] = 0;
Q.addWithPriority(s, 0);

while (!Q.isEmpty()) {

u = Q.extractmin();

Q.remove(u);

for(every edge (u,v)) {

tentative = dist[u] + weight(u,v);

if (tentative < dist[v]) {

dist[v] = tentative;

parents[v] = u;

Q.reducePriority(v, tentative);

}

}

}
8

Run-time of Dijkstra

• Adding and removing from priority queue: 𝑂(log	𝑛)	
• Each goes on and off once, so 𝑂(𝑛	log	𝑛)	

• reduce_priority: 𝑂(log	𝑛)	
• Worst case, once for each edge, so 𝑂(𝑚	log	𝑛)	

• Total time: 𝑂((𝑚 + 𝑛)	log	𝑛)

9

Dijkstra on sample graph

10

A

B F

H

C E

D

G

8

5

2

13

3

3

2

6

1

1
2

5

2

6

Dijkstra on sample graph

A B C D E F G H

Init 03 ∞ ∞ ∞ ∞ ∞ ∞ ∞

A 03 83 23 53 ∞ ∞ ∞ ∞

C 03 83 23 49 79 ∞ ∞ ∞

D 03 6< 23 49 5< 10< 7< ∞

E 03 6< 23 49 5< 10< 6> ∞

B 03 6< 23 49 5< 10< 6> ∞

G 03 6< 23 49 5< 8? 6> 12>

F 03 6< 23 49 5< 8? 6> 11@

H 03 6< 23 49 5< 8? 6> 11@

11Follow the subscripts to find shortest path from start to any vertex

Practice Time

12

