Lecture 37: Graphs III

Spring 2018 Alexandra Papoutsaki & William Devanny

DFS/BFS traversal

- Can be performed in O(n + m), where n = |V|, m = |E|
- Can:
 - Test if *G* is connected
 - If traversal visited all vertices, then graph is connected
 - Compute a spanning tree of G, if G is connected
 - Find a path between two vertices, if it exits
 - Compute the connected components of G (needs to loop over all vertices and run DFS/BFS again)

Connectivity in Digraphs

- **reachable vertices**: when there is a directed path from one to another.
- strongly connected vertices: if mutually reachable
- **strongly connected digraph**: directed path from every vertex to every other vertex
- weakly connected graph: a digraph that would be connected if all of its directed edges were replaced by undirected edges.

Testing connectivity

- For an undirected graph:
 - Run DFS/BFS from any vertex without restarting and see if all vertic es are marked
- For strong connectivity on a directed graph:
 - 1. Initialize all vertices are not visited
 - 2. Run DFS/BFS from an arbitrary vertex v.
 - If traversal does not visit all vertices return false
 - 3. Reverse all edges
 - 4. Start from same vertex *v* and perform DFS/BFS. Graph is strongly connected iff all vertices are marked as visited again.

Single Source Shortest Path Problem

- From a starting node **s**, find the shortest path (and its length) to all other (reachable) nodes
- The collection of all shortest paths form a tree, called... the *shortest path tree*!
- If all edges have the same weight, we can use *BFS*.
- Otherwise ...

Single Source Shortest Path Problem

- If all edges have weights ≥ 0 then use Dijkstra's algorithm
- Essentially BFS with priority queue
- Priorities are best known distance to a node from **s**
- We can keep track of parent nodes to get shortest path
- Example of a **greedy** algorithm

Dijkstra's algorithm (1956) pseudocode

```
Q = {}; //set with unvisited vertices
for(every vertex v in V) {
   dist[v] = Infinity;
   parents[v] = null;
   Q.add(v);
}
   dist[s] = 0;
   while (!Q.isEmpty()) {
      u = vertex in Q with min dist[u];
      Q.remove(u);
      for(every edge (u,v)) {
         tentative = dist[u] + weight(u,v);
         if (tentative < dist[v]) {</pre>
            dist[v] = tentative;
            parents[v] = u;
         }
      }
   }
```

Dijkstra's algorithm (1984) pseudocode

```
Q = new PriorityQueue();
for(every vertex v in V) {
   dist[v] = Infinity;
   parents[v] = null;
   Q.addWithPriority(v,dist[v]);
}
   dist[s] = 0;
   Q.addWithPriority(s, 0);
   while (!Q.isEmpty()) {
      u = Q.extractmin();
      Q.remove(u);
      for(every edge (u,v)) {
         tentative = dist[u] + weight(u,v);
         if (tentative < dist[v]) {</pre>
            dist[v] = tentative;
            parents[v] = u;
            Q.reducePriority(v, tentative);
         }
      }
```

Run-time of Dijkstra

- Adding and removing from priority queue: $O(\log n)$
 - Each goes on and off once, so $O(n \log n)$
- reduce_priority: O(log n)
 - Worst case, once for each edge, so $O(m \log n)$
- Total time: $O((m+n)\log n)$

Dijkstra on sample graph

Dijkstra on sample graph

	Α	В	С	D	E	F	G	н
Init	0 _A	∞	∞	8	8	∞	∞	∞
Α	0_A	8 _A	2_A	5_A	∞	∞	∞	∞
C	0 _A	8 _A	2_A	4 _C	7 _C	∞	∞	∞
D	0_A	6 _D	2_A	4 _C	5 _D	10 _D	7 _D	∞
E	0 _A	6 _D	2_A	4 _C	5 _D	10 _D	6 _{<i>E</i>}	∞
В	0_A	6 _D	2_A	4 _{<i>C</i>}	5 _D	10 _D	6 _{<i>E</i>}	∞
G	0 _A	6 _D	2_A	4 _C	5 _D	8 _G	6 _{<i>E</i>}	12 _{<i>E</i>}
F	0_A	6 _D	2_A	4 _C	5 _{<i>D</i>}	8 _{<i>G</i>}	6 _{<i>E</i>}	11_F
н	0 _A	6 _D	2 _A	4 _C	5 _D	8 _{<i>G</i>}	6 _{<i>E</i>}	11_F

Follow the subscripts to find shortest path from start to any vertex

Practice Time

