Lecture 36: Graphs II

CS 62
Spring 2018
Alexandra Papoutsaki \& William Devanny

Number of Edges

- If $|V|=n$, then:
- minimum number of edges: 0
- A graph can have only nodes
- For simple directed graphs, maximum number: $n(n-1)$
- For simple undirected graphs, maximum number: $\frac{n(n-1)}{2}$
- Dense graphs \rightarrow \#edges close to maximum
- Sparse graphs \rightarrow \#edges close to n

Graph Representations

- Adjacency Matrix
- Adjacency List

Adjacency Matrix

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	0	1	1	1
\mathbf{B}	1	0	0	1
\mathbf{C}	1	0	0	0
\mathbf{D}	1	1	0	0

- Good for dense graphs
- Constant time for lookup for edges.
- Constant time for adding/removing an edge
- Symmetric if undirected.
- Can hold weights.

Adjacency Lists

- Good for sparse graphs, saves space.
- Linear time lookup for edges.

Time complexity comparison

Operation	Adjacency Matrix	Adjacency List
Store graph	$O\left(\|V\|^{2}\right)$	$O(\|V\|+\|E\|)$
Add vertex	$O\left(\|V\|^{2}\right)$	$O(1)$
Add edge	$O(1)$	$O(1)$
Remove vertex	$O\left(\|V\|^{2}\right)$	$O(\|E\|)$
Remove edge	$O(1)$	$O(\|V\|)$
Are two vertices adjacent	$O(1)$	$O(\|V\|)$

Spanning Trees

- Tree: connected undirected graph with no cycles
- Spanning tree of G : includes every vertex of G and is a subgraph of G (every edge belongs to G)
- Can have properties like minimum-cost
- Can be constructed by search algorithms

Depth-First Search

- Explore the graph without revisiting nodes
- Depth-first means go until you hit a dead end, then back up to branch out

Recursive DFS pseudocode

```
DFS(G,v){
    visited[v] = true;
    for(every edge (v,w)){
            if(!visited[w]){
                DFS(G,w);
            }
}
}
```


Order of visit: A B D F E C G

Practice time

Order of visit: A B S C D E H G F

Non-recursive DFS pseudocode

```
for(every vertex v)
    visited[v]=false;
s=new Stack();
s.push(v1);
while(!s.isEmpty())
{
    v = s.pop();
    if (!visited[v])
    {
        visited[v] = true;
        for (every edge (v, w))
        if (!visited[w])
            s.push(w);
    }
}
```


Order of visit: A E F B D C G

Practice time

Order of visit: A S G H E C F D B

Breadth-First Search

- Replace stack with queue
- Now we explore in order of distance from start
- Algorithm:

1. Mark start vertex
2. Add all unmarked neighbors to queue and mark them
3. Repeat step 2 with next from queue until it's empty

BFS pseudocode

```
for(every vertex v)
    visited[v]=false;
q=new Queue();
q.enqueue(v1);
while(!q.isEmpty())
{
    v = q.dequeue();
    if (!visited[v])
    {
            visited[v] = true;
            for (every edge (v, w))
                if (!visited[w])
                q.enqueue(w);
    }
}
```


Order of visit: A B C E D F G

Practice time

Order of visit: A B S C G D E F H

DFS/BFS traversal

- Can be performed in $O(n+m)$, where $n=|V|, m=|E|$
- Can:
- Test if G is connected
- If traversal visited all vertices, then graph is connected
- Compute a spanning tree of G, if G is connected
- Find a path between two vertices, if it exits
- Compute the connected components of G (needs to loop over all vertices and run DFS/BFS again)

Connectivity in Digraphs

- reachable vertices: when there is a directed path from one to another.
- strongly connected vertices: if mutually reachable
- strongly connected digraph: directed path from every vertex to every other vertex
- weakly connected graph: a digraph that would be connected if all of its directed edges were replaced by undirected edges.

Testing connectivity

- For an undirected graph:
- Run DFS/BFS from any vertex without restarting and see if all vertic es are marked
- For strong connectivity on a directed graph:
- 1. Initialize all vertices are not visited
- 2. Run DFS/BFS from an arbitrary vertex v.
- If traversal does not visit all vertices return false
- 3. Reverse all edges
- 4. Start from same vertex v and perform DFS/BFS. Graph is strongly connected iff all vertices are marked as visited again.

