
CS 62
Spring 2018

Alexandra Papoutsaki & William Devanny

Some slides based on those fom Dan Grossman, U. of Washington

1

Lecture 34: Concurrency IV



Race Conditions

• A race condition occurs when the computation result 
depends on scheduling (how threads are interleaved) 
• If T1 and T2 happened to get scheduled in a certain way, things go 

wrong
• Since we do not control scheduling, we need to write programs 

that work independent of scheduling 
• Race conditions are bugs that exist only due to concurrency
• No interleaved scheduling problems with only 1 thread.

• Typically, problem is that some intermediate state can be 
seen by another thread; screws up other thread.

2



Data Races vs Bad Interleavings

• We will make a big distinction between these terms
• Both are kinds of race-condition bugs
• Confusion often results from not distinguishing these or using the 

ambiguous “race condition” to mean only one

3



Data races (briefly)

• A data race is a specific type of race condition that can happen in 2 
ways:
• Two different threads potentially write a variable at the same time 
• One thread potentially writes a variable while another reads the variable 

• Not a race: simultaneous reads provide no errors 
• “Potentially” is important 
• We claim the code itself has a data race independent of any particular actual 

execution 

• Data races are bad, but we can still have a race condition, and bad 
behavior, when no data races are present...through
bad interleavings (what we will discuss now). 

4



Stack Example

5

class Stack<E> {
private E[] array; 
private int index = 0;
Stack(int size) {

array = (E[]) new Object[size];
}
synchronized boolean isEmpty() {

return index==0;
}
synchronized void push(E val) {

if(index==array.length) 
throw new StackFullException();

array[index++] = val; 
}
synchronized E pop() {

if(index==0) 
throw new StackEmptyException();

return array[--index]; } } 



Let’s implement peek()

synchronized E peek() {
if(index==0)

throw new StackEmptyException();
return array[index-1];

} 

class C {
static <E> E myPeekHelper(Stack<E> s) { 

synchronized (s) {
E ans = s.pop();
s.push(ans);
return ans;

} } } 

6

correct

Weird,	but	correct



Example of race condition, not data race

class C {
static <E> E myPeekHelper(Stack<E> s) { 

E ans = s.pop();
s.push(ans);
return ans;

} } 

• No overall effect on the shared data. State should be the same at the end
• But the way it is implemented creates an inconsistent intermediate state 
• There is still a race condition though. This intermediate state should not be 

exposed à bad interleavings

7



peek() and isEmpty()

8



peek() and push()

9



peek() and pop()

10



peek() and peek() on 1 element

11



peek() and peek() on > 1 element

12



The fix

• peek needs synchronization to disallow interleavings
• The key is to make a larger critical section
• That intermediate state of peek needs to be protected 

• Use re-entrant locks; will allow calls to push and pop
• Code on right is example of a peek external to the Stack class 

13



The wrong fix

• Focus so far: problems from peek doing writes that lead to an 
incorrect intermediate state 

• Tempting but wrong: If an implementation of peek (or 
isEmpty) does not write anything, then maybe we can skip the 
synchronization? 

• Does not work due to data races with push and pop... 

14



Example

15



Why wrong?

• It looks like isEmpty and peek can “get away with this” since 
push and pop adjust the state “in one tiny step” 

• But this code is still wrong and depends on language-
implementation details you cannot assume
• Even “tiny steps” may require multiple steps in the implementation: 

• array[++index] = val; probably takes at least two steps
• Code has a data race, allowing very strange behavior 

• Moral: Do not introduce a data race, even if every interleaving you 
can think of is correct 

16



Getting it right

• Avoiding race conditions on shared resources is difficult 
• What “seems fine” in a sequential world can get you into trouble when 

multiple threads are involved.
• Decades of bugs have led to some conventional wisdom: general techniques 

that are known to work 

• Next we discuss this conventional wisdom! 

17



3 choices

• For every memory location (e.g., object field) in your program, you 
must obey at least one of the following: 

1. Thread-local: Do not use the location in > 1 thread 
2. Immutable: Do not write to the memory location
3. Shared-and-mutable: Use synchronization to control access to the 

location 

18



1. Thread-local

• Whenever possible, do not share resources
• Easier to have each thread have its own thread-local copy of a resource 

than to have one with shared updates
• This is correct only if threads do not need to communicate through the 

resource
• That is, multiple copies are a correct approach 

• Note: Because each call-stack is thread-local, never need to 
synchronize on local variables 

• In typical concurrent programs, the vast majority of objects should 
be thread-local: shared-memory should be rare – minimize it!

19



2. Immutable

• Whenever possible, don’t update objects 
• Make new objects instead 

• One of key tenets of functional programming
• You did study this in 52
• Generally helpful to avoid side-effects
• Much more helpful in a concurrent setting 

• If a location is only read, never written, no synchronization is 
necessary!
• Simultaneous reads are not races and not a problem

• Programmers over-use mutation – minimize it!

20



3. The rest: keep it synchronized

• After minimizing the amount of memory that is (1) thread-shared 
and (2) mutable, we need guidelines for how to use locks to keep 
other data consistent 

• Guideline: No data races
• Never allow two threads to read/write or write/write the same location at 

the same time (use locks!)
• Even if it ‘seems safe’ 

• Necessary: A Java or C program with a data race is almost always 
wrong

• But Not sufficient: Our peek example had no data races, and it’s 
still wrong... 

21



Worse than you think

Assertion always true w/ single threaded. 
• Looks always true for multithreaded. 
• OK if f not called at all
• OK after f completes
• Looks OK if in middle of f 
• But has race condition 

22



Memory reordering

• For performance reasons, compiler and hardware reorder 
memory operations. 

• But, but, ... 
• Compiler/hardware will never perform a memory reordering 
• that affects the result of a single-threaded program 
• The compiler/hardware will never perform a memory reordering that affects 

the result of a data-race-free multi- threaded program 

• So: If no interleaving of your program has a data race, then 
need not worry: result will be equivalent to some 
interleaving 

23


