
Lecture 32: Concurrency 1.5

CS 62 Spring 2018

Alexandra Papoutsaki & William Devanny

Based on slides from Papoutsaki, Bruce, and Grossman



Concurrency vs Parallelism

Concurrency

Parallelism

Multiple tasks running during overlapping time periods

Multiple tasks running at literally the exact same time

One person cooking in a kitchen vs restaurant full of chefs



Sharing resources

If tasks are independent, no need to share

fork-join with simple parallel algorithms

If tasks use same memory?

we need to coordinate access!

Efficiently coordinating and synchronizing access
to resources is very difficult



The challenge of concurrency

Race condition - undesirable behavior of a program where
the output of a program is dependent on the sequencing
or timing of uncontrollable events

Concurrency introduces non-determinism!

The JVM can jump between separate threads and execute
their lines of code in any order

The scheduling of threads can affect what each thread sees
and knows about any shared resources

Debugging and testing are also very difficult



Bank account example

Simple bank account class:

getBalance, deposit, withdraw

Two threads: one that withdraws and one that deposits

What is going to happen?



Bank account failure
deposit(int dollars) {

2 if(dollars < 0)
throw ...;

3 int b = balance;
4 balance = b + dollars;

}

withdraw(int dollars) {
1 int b = balance;

5 if(b < dollars)
throw ...;

6 balance = b - dollars;
}
On both sides, b is the original balance

When line 6 executes, the deposit is overwritten!

Critical section - segment of code that accesses shared resource



Other concurrency examples

I/O is expensive, have threads use a shared cache of recent files

What if two threads open a new file and add it to
the cache at the same time?

What if one thread tries to access a file at the same time
another tries to remove it to make room in the cache?

Multi-stage task, have one thread for each stage and use a
queue to hand-off results from one stage to the next

What if enqueuer and dequeuer adjust
a circular linked list at the same time?



Sharing is caring

Very common to have multiple threads accessing the same
resource in an unpredictable order

Program correctness requires that synchronization be used
to avoid having multiple threads in a critical section

If multiple threads can enter critical sections at
the same time, the code has a race condition

Finding race conditions is very hard

Might occur very rarely, so testing is difficult

Have to be very thoughtful while programming



Bad bank account fix

Unfortunately only pushes off the problem

Try to use a boolean to prevent double execution

What if both threads check the value of blocked
at the same time, and then both set it to be true?



Bad bank account race condition
deposit(int dollars) {
1 while(blocked) {}

5 blocked = true;
6 if(dollars < 0)

throw ...;
7 int b = balance;
8 balance = b + dollars;
9 blocked = false;
}

withdraw(int dollars) {

2 while(blocked) {}
3 blocked = true;
4 int b = balance;

10 if(b < dollars)
throw ...;

11 balance = b - dollars;
12 blocked = false;
}



Mutual exclusion techniques

Synchronize blocks

Several common tools exist

Mutual exclusion locks (mutexes/locks)

Synchronized bank account example

Can synchronize on any object or
make a whole method synchronized

Block of code that can only be entered by one thread

lock(), unlock()

lock() blocks until the object is unlocked

Locked bank account example



Deadlock

Thread 1:

1 lock1.lock()

3 lock2.lock()

Thread 2:

2 lock2.lock()

4 lock1.lock()

Both threads stuck waiting for a lock that
the other thread needs to unlock


