
CS 62
Spring 2018

Alexandra Papoutsaki & William Devanny

Some slides based on those fom Dan Grossman, U. of Washington

1

Lecture 31: Parallelism II &
Concurrency I

ForkJoin

• Create a ForkJoinPool
• Don’t subclass Threadà Subclass RecursiveTask<V>
• Don’t override run à Do override compute
• Do not use an ans field à Do return a V from compute
• Don’t call start à Do call fork
• Call join that returns answer

2

Getting good results in practice

• Sequential threshold
• Library documentation recommends doing approximately 100-

5000 basic operations in each “piece” of your algorithm

• Library needs to “warm up” – May see slow results before the
Java virtual machine reoptimizes the library internals

• Wait until your computer has more processors
• Seriously, overhead may dominate at 4 processors, but parallel

programming is likely to become much more important

3

Work and Span

• With a sequential algorithm, we consider 𝑇(𝑛) as its runtime
• For a parallel algorithm, we will consider 𝑇% or 𝑇%(𝑛)	as the

runtime of the algorithm using 𝑃 processors.
• There are two important runtime quantities for a parallel

algorithm:
• How long it would take if it were to run on one processor (work)
• How long it would take if it were as parallel as possible (span)

4

Definitions

• Work: 𝑇(𝑛 = 	𝑇 𝑛 	or	T(is how long it takes to run on one
processor, that is the total of all the running times of all the
pieces of the algorithm

• Span: T- 𝑛 or T- is how long it takes to run on an unlimited
number of processors
• Not necessarily 𝑂(1) time
• Still need to do forking and combine results

5

Program Graph

• A program execution using fork and join can be seen as a DAG
• A DAG is a graph that is directed (edges have direction (arrows)), and

those arrows do not create a cycle (path that starts and ends at the
same node).

• Nodes: Pieces of work, each 𝑂(1)	amount of work

• Edges: Dependencies –
Source must finish before destination starts

• A fork “ends a node” and makes two outgoing edges
• New thread and continuation of current thread

• A join “ends a node” and makes a node with two incoming edges
• Node just ended and last node of thread joined on

6

fork

join

Work and Span on Program Graph

• We can now describe work and span as:
• Work: How long it would take on 1 processor = 𝑇(

Sum of run-time of all nodes in DAG, i.e. number of nodes
• Span: How long it would take infinity processors = T-

Sum of all run-time of all nodes on most expensive path in
DAG, i.e. length of longest path in DAG

7

Execution DAG on summing an array

8

• The work in the nodes in the top
half is to create two subproblems.

• The work in the nodes in the
bottom half is to combine two
results.

• 𝑇(is 𝑂(𝑛)	since there are
approximately 2𝑛 nodes.

• 𝑇- is 𝑂(log 𝑛)	two trees of height
log 𝑛 each.

Performance

• Speedup on 𝑃 processors: 34
35

• Ratio of how much faster it would run on 𝑃 processors
• E.g., if 𝑇(is 20 and 𝑇6 is 8, then speedup is 2.5

• Perfect speedup: 𝑃 as we vary 𝑃
• E.g., 4 for the example above
• Rare due to overhead of thread creation and communication

• Perfect linear speedup: doubling 𝑃 cuts running time in half
• Not upper limit

9

Parallelism

• Reporting 𝑇(/𝑇% can overstate advantages of parallelism
• 𝑇(is runtime of parallel algorithm on 1 processor
• Likely much slower than sequential algorithm

• More realistic speedup definition 𝑆/𝑇%
• 𝑆 time for sequential algorithm
• Lower than 𝑇(/𝑇%

• Parallelism: 𝑇(/𝑇-
• Maximum possible speedup
• At least as great as speedup for any 𝑃
• e.g., for our sum array problem, parallelism is 𝑂(𝑛/ log 𝑛)
• We can hope for an exponential speedup over sequential version

10

ForkJoin guarantees expected bound

• 𝑇% = 𝑂((𝑇(/	𝑃) 	+ 	𝑇-)
• Given 𝑃 processors, no framework can beat 𝑇(/𝑃 or 𝑇- by more than a

constant factor
• When 𝑃 is small, 𝑇(/𝑃 is dominant, giving roughly linear speedup
• When 𝑃 grows, limit influenced by span

• Framework on average gives best performance, assuming user did
follow the paradigm as best as possible:
• All threads ~ same work, careful with load balancing

• Bottom line:
• Focus on your algorithms, data structures, and cut-offs rather than

number of processors and scheduling.
• Just need 𝑇(, 𝑇-, and 𝑃 to analyze running time

11

Examples for 𝑇% = 	𝑂((𝑇(/𝑃) 	+	𝑇-)	

• For summing:
• 𝑇(= 	𝑂 𝑛
• 𝑇- 	= 	𝑂 log 𝑛
• So expect 𝑇% 	= 	𝑂 :

%
	+ log 𝑛

• If instead:
• 𝑇(= 	𝑂(𝑛;)
• 𝑇- = 	𝑂(𝑛)	

• Then expect 𝑇% = 	𝑂(:
<

%
	+ 	𝑛)

12

Amdahl’s Law

• Upper bound on speed-up!
• Suppose the work is 1 unit time.
• Let 𝑆	be portion of execution that cannot be parallelized.
• 𝑇(= 	𝑆 + 1 − 𝑆 = 1
• Suppose we get perfect speedup on parallel portion.
• 𝑇% = 	𝑆 + (>?

%
	

• Then overall speedup with 𝑃 processors (Amdahl’s law):
• 34

35
	= (

(?@4AB5)

• Parallelism (∞ processors) is: 34
3C
= (

?

13

Bad news

• Parallelism (∞ processors) is: 34
3C
= (

?

• If 33% of program is sequential, then absolute best speedup
is (
D.FF

	= 	3	
• That means infinitely many processors won’t help us get more than

a 3 times speed-up!

• From 1980 - 2005, every 12 years gave 100x speedup
• Now suppose clock speed is same but 256 processors instead of 1.

• To get 100x speedup, need 100	 ≤ 	 (
(?@4AB5)

• Solve to get solution 𝑆	 ≤ 0.61%, so need code to be
99.4%	perfectly parallel.

14

So let’s give up?

• Amdahl tells us that if a particular algorithm has too many
sequential computations, it’s better to find a more
parallelizable algorithm than to just add more processors.

• Not all is lost. We can change what we compute
• Computer graphics now much better in video games with GPU’s --

not much faster, but much more detail.

• Side note: Moore’s law is just an observation, while
Amdahl’s law is an actual mathematical theorem

15

Sharing resources

• We’re done talking about parallelism.
• Our goal is no longer (necessarily) “to make the program faster”.
• The ForkJoin Framework is great, but it doesn’t actually allow us to

share resources.
• Two threads only interact at birth and death

• Strategy won’t work well when:
• Memory accessed by threads is overlapping or unpredictable
• Threads are doing independent tasks needing access to same

resources (rather than implementing the same algorithm)

• For the next few lectures, we’ll investigate what happens when we
lift that restriction.
• Two threads can run different algorithms now

16

Concurrent Programming

• Allowing simultaneous or interleaved access to shared
resources from multiple clients.

• Requires coordination, particularly synchronization to avoid
incorrect simultaneous access: make somebody block
• join is not what we want
• block until another thread is “done using what we need” not

“completely done executing”

17

Very complicated, very quickly

• Concurrent code gets very complicated very quickly. Why?
• Concurrency introduces non-determinism!
• In sequential programming, when you run the same

program multiple times, you get the same result
• This is no longer true for concurrent programs. Threads can

run in any order giving unpredictable results.
• How threads are scheduled affects what operations from

other threads they see and when they see them.
• Non-repeatability complicates testing and debugging.

18

Examples

• Multiple threads:
• Processing different bank-account operations
• What if 2 threads change the same account at the same time?

• Using a shared cache of recent files
• What if 2 threads insert the same file at the same time?

• Creating pipeline with queue for handing work to next
thread in sequence?
• What if enqueuer and dequeuer adjust a circular array queue at the

same time?

19

Threads again?!

• Not about speed, but code structure for responsiveness
• Example: Respond to GUI events in one thread while

another thread is performing an expensive computation
• Processor utilization (mask I/O latency)
• If 1 thread “goes to disk,” have something else to do

• Failure isolation
• Convenient structure if we want to interleave multiple tasks and

don’t want an exception in one to stop the other

20

Sharing is caring

• Common to have different threads access the same
resources in an unpredictable order or even at about the
same time

• But program correctness requires that simultaneous access
be prevented using synchronization

• Simultaneous access is rare
• Makes testing difficult
• Must be much more disciplined when designing / implementing a

concurrent program
• We will discuss common idioms known to work

21

