
CS 62
Spring 2018

Alexandra Papoutsaki & William Devanny

Some slides based on those fom Dan Grossman, U. of Washington

1

Lecture 28: Parallelism II

Example behind Parallelism Idea

• Method to calculate sum of elements of an array
• Use 4 threads, which each sum 1/4 of the array
• Steps:
• Create 4 thread objects, assigning each their portion of the work
• Call start() on each thread object to actually run it
• Wait for threads to finish
• Add together their 4 answers for the final result

2

How to Create a Thread in Java

1. Define class C extends Thread
• Override public void run()
• Thread in java.lang

2. Create object of class C
3. Call that thread’s start method
• Creates new thread and starts executing run method.
• Direct call of run won’t work, similarly to the issue as paint-repaint.

• Alternatively, define class implementing Runnable, create
thread with it as parameter, and send start message
• Allows class to extend a different one.

3

First Attempt
class SumThread extends Thread{

int lo, int hi, int[] arr
int ans = 0; // for communicating result
SumThread(int[] a, int l, int h) {

lo=l; hi=h; arr=a;}
public void run(){

for(int i=lo; i < hi; i++) ans += arr[i];}
}
//some other class
static int sum(int[] arr){

int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start(); // use start not run

}
for(int i=0; i < 4; i++)// combine results

ans += ts[i].ans;
return ans;

} 4

Does not wait for helper threads to
finish before it sums the ans fields

(Semi) Correct Version
class SumThread extends Thread {

int lo, int hi, int[] arr
int ans = 0;
SumThread(int[] a, int l, int h) { … }
public void run(){ … }

}
//some other class
static int sum(int[] arr){

int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start(); }

for(int i=0; i < 4; i++){
ts[i].join(); // wait for helpers to finish!
ans += ts[i].ans;

}
return ans;

} 5

Needs to be within a
try/catch block

Thread class methods

• void start(), which calls void run()
• void join() which blocks until receiver thread is done
• Style called fork/join parallelism
• It needs a try-catch around join as it can throw

InterruptedException
• Some memory sharing:

• lo, hi, arr fields written by “main” thread, read by helper thread
• ans field written by helper thread, read by “main” thread

• Later, we will learn how to protect data (race conditions)
using synchronized

6

Great, right? Actually, no!

• If we time it, it’s slower than sequential!!
• We want out code to be reusable and efficient as core count

grows (“forward-portable”).
• At minimum, make #threads a parameter (e.g., in the sum method)

• Want to effectively use processors available now
• Not being used by other programs or threads in your program
• Can change while your threads running

7

Problem

• Suppose we have a computer with 4 processors and a
problem of size 𝑛
• We can solve the problem with 3 processors, each taking time 𝑡 on

#
$

elements.

• Suppose linear in size problem:
• We want to use all 4 processors, but one is busy playing music
• First 3 threads run, but 4th waits

• First 3 threads scheduled and take time
%
&
%
'
∗ 𝑡 = ¾𝑡

• After first 3 are finished, run 4th which takes another ¾𝑡
• Total time ends up	¾𝑡 + ¾𝑡	 = 	1.5𝑡
• Runs 50% slower than with 3 threads!

8

More problems

• Subproblems can take significantly different amounts of
time
• Apply method f to every array element, but maybe f is much

slower for some data items. e.g., is a large integer prime?
• If unlucky, all slow operations may be assigned to the same thread

• Certainly, won’t see 𝑛	 speedup with 𝑛 threads
• May be much worse, due to load imbalance

9

Toward a solution

• To avoid having to wait too long for any one thread, instead
create lots of threads, far more than #cores

• Schedule threads as processors become available.
• If a thread is very slow, many others will get scheduled on

other processors while that one runs.
• Will work well if the slow thread is scheduled relatively early

10

Divide and Conquer

1. Divide problem into pieces recursively:
• Start with full problem at root – Halve and make new thread until

size is at some cutoff

2. Combine answers in pairs as we return from recursion

• If have 𝑛𝑢𝑚𝑃𝑟𝑜𝑐	processors then total time 𝑂(#
#89:;<=

	+
	log	𝑛)

11

In practice

• Creating so many threads and synchronizing their
communication swamps savings

• Instead, use sequential cutoff about 500-1000
• Eliminates almost all the recursive thread creation (bottom levels of

tree)
• Exactly like quicksort switching to insertion sort for small

subproblems, but more important here

• Don’t create two recursive threads: create one thread and
do the other piece of work ”yourself”
• Cuts number of threads in half

12

ForkJoin Framework to the rescue

• Java’s threads are too heavyweight
• ForkJoin Framework addresses the need for divide-and-

conquer fork-join parallel programming
• Part of Java 7

13

Java Threads VS ForkJoin

• Create a ForkJoinPool
• Don’t subclass Threadà Subclass RecursiveTask<V>
• Don’t override run à Do override compute
• Do not use an ans field à Do return a V from compute
• Don’t call start à Do call fork
• Call join that returns answer
• To optimize, call compute instead of fork (rather than run

14

Getting good results in practice

• Sequential threshold
• Library documentation recommends doing approximately 100-

5000 basic operations in each “piece” of your algorithm

• Library needs to “warm up” – May see slow results before the
Java virtual machine reoptimizes the library internals

• Wait until your computer has more processors
• Seriously, overhead may dominate at 4 processors, but parallel

programming is likely to become much more important

15

Examples

• Maximum or minimum element
• Is there an element satisfying some property (e.g., is there a

47)?
• Left-most element satisfying some property (e.g., first 47)
• Smallest rectangle encompassing a number of points
• Counts; for example, number of strings that start with a

vowel
• Are these elements in sorted order?
• Create a Histogram of test results from a much larger array

of actual test results

16

CPU vs GPU

From Mythbusters:

https://www.youtube.com/watch?v=-
P28LKWTzrI&feature=youtu.be

In a bit more detail:
https://www.youtube.com/watch?v=1kypaBjJ-pg

17

