Lecture 26: More Dictionaries &
Hashing

CS 62

Spring 2018
Alexandra Papoutsaki & William Devanny

Nalve Version

* Warning: this code is simplified!

public class Map<K, V> {
protected V[] entries;

public V get (K key) {
int index = key.hashCode () % entries.length;
return entries[index];

}

public void put (K key, V value) {
int index = key.hashCode () % entries. length;
entries[index] = value;

Hash Collisions

« kl.hashCode() == kZ2.hashCode() butkl !'= k2

May also be caused by the modulus operation

* Thisisinevitable (e.g., the birthday paradox)

« A”good” hash function rarely collides

Two main strategies to avoid collisions

1) Open addressing (closed hashing):
Each bucket can store at most one entry
If hash falls in occupied bucket then search procedure for
next empty bucket based on:
Linear probing
Quadratic probing
Double probing

2) Closed Addressing (open or external hashing/bucketing):
Each bucket can store multiple entries
Separate chaining

Linear Probing

« |f we collide, check next entry until one is empty.
Wrap around when at the end of table

« Deletion is complicated
« Canonly hold entries.length items

» Resizing the table requires rehashing everything

« Suffers from primary clustering

Linear Probing Example: h(k) = k%13

Keys to insert: 17, 33, 18, 20, 44, 11, 19, 7 (ignore values)

0 1 2 3 4 5 6 7 8 9 10 11 12
17
17 33
17 18 33
17 18 33 20
17 18 44 33 20
17 18 44 33 20 11
17 18 44 33 20 19 1M
17 18 44 33 20 19 7 11

Collision!

Collision!

Collision!

fCollision!

Linear Probing

» Keys with same hash will be clustered together

« The same thing can happen with unrelated keys forming
primary clusters

e The more elements we add, the more collisions

Linear Probing Lookup

 Start at location returned by hashing function
« If key was found = value

* If key was not found search linearly until:
* You find the key = value
* You find an empty slot before you have found key = null
* You wrapped around and ended up where you started = null

« Example: get(7) returns the value for 7

0 1 2 3 4 5 6 7 8 9 10 11 12
17 | 18 [44 [33] 2 [19] 7 [1
« Example: get(6) returns null
0 1 2 3 4 5 6 7 8 9 10 11 12
17 | 18 [44 [33] 20 [19| 7 [1

Quadratic Probing

e h(k,i) = (h(k) + cqi + cyi?) (mod n),c, = 0

* Ifc, = 0then degrades to linear probing

« E.g., h(k,i) = (h(k) + i%) (mod n), then for every probing
h(k),h(k) +1,h(k) + 4, ...

« Canresultin cases where we don't try all slots
E.g.,n = 5, and start with h(k) = 1.
Rehashings give 2,0,0,2,1,2,0,0, ...
The slots 3 and 4 will never be examined to see if they have room

« Secondary Clustering

Quadratic Probing: h(k,i) = (k%13)

Keys to insert: 17, 33, 18, 20, 44, 11, 19, 7 (ignore values)

Collision!

Collision!

Collision!

0 1 2 3 4 5 6 7 8 9 10 11 12
17
17 33
17 18 33
17 18 33 20
17 18 44 33 20
17 18 44 33 20 11
17 18 44 33 20 19 11
17 18 44 33 20 19 11

1€Collision!

Double Hashing

« Use second hash function on key to determine delta
(interval) for next try

* h(k,i) = (hy(k) +i-hy(k)) (modn),
« E.g., hy(k)=(kmod (n —2))+1
* Helps with primary and secondary clustering

« Example:
Suppose hy(n) =n%5
Then hy(1) = hy(6) = hy(11)
However, h,(1) = 2,h,(6) = 1,h,(11) = 3

11

Separate Chaining

Turn each bucket into a linked list (or array, etc.)
On collision add to the bucket

Searching list is fast if lists are small

Deletion is simple

Can hold more than entries.length items easily

12

L oad Factor

« Performance depends on load factor

 Loadfactorisa = — where n = items in table and
N = size of table

* Higher load factor - more collisions - slow

« Can be > 1 for external chaining

« For open addressing usually wantto ensure @ < 0.75
* Generallya > 0.75 means resize the table (& rehash everything)

Performance

I I N

Linear Probing 1/2(1+ 1/(1 —a)?) 1/2(1+ 1/(1 —a))
Double Probing 1/(1—a) —(1/a)/log(1 — a)
External Chaining a+e 14+1/2a

Entries represent number of comparisons needed to find a specific element or demonstrate
that it is not in the hash table

14

Performance fora = .9

N I N

Linear Probing 55 5.5
Double Probing 10 ~4
External Chaining 3 1.45

Entries represent number of comparisons needed to find a specific element or demonstrate
that it is not in the hash table

15

Number of Probes

linear, not found ——
linear, found -
double, not found
i double, found
chaining, not found -----
chaining, found ----

0 0.2 04 0.6

0.8

1

Load Factor (Stored Values/Table Size)

1.2

16

Space requirements

Open addressing: TableSize +n*objectsize
External chaining: TableSize +(n*objectsize+1)

Rule of thumb:
* Small elements, small load factor: open addressing
« Large elements, large load factor: external chaining

17

