
CS 62
Spring 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 26: More Dictionaries &
Hashing

Naïve Version

• Warning: this code is simplified!

2

Hash Collisions

• k1.hashCode() == k2.hashCode() but k1 != k2

• May also be caused by the modulus operation

• This is inevitable (e.g., the birthday paradox)

• A “good” hash function rarely collides

3

Two main strategies to avoid collisions

1) Open addressing (closed hashing):
Each bucket can store at most one entry
If hash falls in occupied bucket then search procedure for
next empty bucket based on:
• Linear probing
• Quadratic probing
• Double probing

2) Closed Addressing (open or external hashing/bucketing):
Each bucket can store multiple entries
• Separate chaining

4

Linear Probing

• If we collide, check next entry until one is empty.
Wrap around when at the end of table

• Deletion is complicated

• Can only hold entries.length items

• Resizing the table requires rehashing everything

• Suffers from primary clustering

5

Linear Probing Example: ℎ(𝑘) 	= 	𝑘%13

6

Keys to insert: 17, 33, 18, 20, 44, 11, 19, 7 (ignore values)
0 1 2 3 4 5 6 7 8 9 10 11 12

17

17 33

17 18 33

17 18 33 20 Collision!

17 18 44 33 20 Collision!

17 18 44 33 20 11

17 18 44 33 20 19 11 Collision!

17 18 44 33 20 19 7 11 Collision!

Linear Probing

• Keys with same hash will be clustered together
• The same thing can happen with unrelated keys forming

primary clusters
• The more elements we add, the more collisions

7

Linear Probing Lookup

• Start at location returned by hashing function
• If key was found à value
• If key was not found search linearly until:

• You find the key à value
• You find an empty slot before you have found key à null
• You wrapped around and ended up where you started à null

• Example: get(7) returns the value for 7

• Example: get(6) returns null

8

17 18 44 33 20 19 7 11

0 1 2 3 4 5 6 7 8 9 10 11 12

17 18 44 33 20 19 7 11

0 1 2 3 4 5 6 7 8 9 10 11 12

Quadratic Probing

• ℎ 𝑘, 𝑖 = ℎ 𝑘 + 𝑐.𝑖 +	𝑐/𝑖/ 	 𝑚𝑜𝑑	𝑛 , 𝑐/ ≠ 0
• If 𝑐/ = 0	then degrades to linear probing
• E.g., ℎ 𝑘, 𝑖 = ℎ 𝑘 +	𝑖/ 	 𝑚𝑜𝑑	𝑛 ,	then for every probing

ℎ 𝑘 , ℎ 𝑘 + 1, ℎ 𝑘 + 4,…
• Can result in cases where we don’t try all slots
• E.g., 𝑛 = 	5, and start with ℎ(𝑘) 	= 	1.
• Rehashings give 2, 0, 0, 2, 1, 2, 0, 0, …
• The slots 3 and 4 will never be examined to see if they have room

• Secondary Clustering

9

Quadratic Probing: ℎ(𝑘, 𝑖) = (𝑘%13) + 𝑖/

106

Keys to insert: 17, 33, 18, 20, 44, 11, 19, 7 (ignore values)
0 1 2 3 4 5 6 7 8 9 10 11 12

17

17 33

17 18 33

17 18 33 20 Collision!

17 18 44 33 20 Collision!

17 18 44 33 20 11

17 18 44 33 20 19 11 Collision!

7 17 18 44 33 20 19 11 Collision!

Double Hashing

• Use second hash function on key to determine delta
(interval) for next try

• ℎ 𝑘, 𝑖 = ℎ. 𝑘 + 𝑖 : ℎ/(𝑘) 	 𝑚𝑜𝑑	𝑛 ,
• E.g., ℎ/ 𝑘 = (𝑘	𝑚𝑜𝑑	 𝑛	 − 2) + 1
• Helps with primary and secondary clustering

• Example:
• Suppose ℎ. 𝑛 = 𝑛	%	5
• Then ℎ. 1 = ℎ.(6) = ℎ.(11)
• However, ℎ/ 1 = 2, ℎ/ 6 = 1, ℎ/ 11 = 3

11

Separate Chaining

• Turn each bucket into a linked list (or array, etc.)

• On collision add to the bucket

• Searching list is fast if lists are small

• Deletion is simple

• Can hold more than entries.length items easily

12

Load Factor

• Performance depends on load factor

• Load factor is 𝛼	 = 	 >
?

where 𝑛 = items in table and
𝑁	= size of table

• Higher load factor → more collisions → slow
• Can be > 1	for external chaining
• For open addressing usually want to ensure 𝛼	 < 	0.75
• Generally 𝛼	 > 	0.75 means resize the table (& rehash everything)

13

Performance

Strategy Unsuccessful Successful

Linear Probing 1/2	(1 + 	1/(1 − 𝑎)/) 1/2	(1 + 	1/(1 − 𝑎))

Double Probing 1/(1 − 𝑎) −(1/𝑎)/𝑙𝑜𝑔(1 − 𝑎)

External Chaining 𝑎 + 𝑒JK 1 + 1/2𝑎

14

Entries represent number of comparisons needed to find a specific element or demonstrate
that it is not in the hash table

Performance for 𝑎	 = 	 .9

Strategy Unsuccessful Successful

Linear Probing 55 5.5

Double Probing 10 ~4

External Chaining 3 1.45

15

Entries represent number of comparisons needed to find a specific element or demonstrate
that it is not in the hash table

16

Space requirements

• Open addressing: TableSize +n*objectsize
• External chaining: TableSize +(n*objectsize+1)

• Rule of thumb:
• Small elements, small load factor: open addressing
• Large elements, large load factor: external chaining

17

