
CS 62
Spring 2018

Alexandra Papoutsaki & William Devanny

Lecture 2: Java & Javadoc

1

Methods

• A collection of grouped statements that perform a logical operation and

control the behavior of objects

• Syntax:

• modifier return-type method-name(type parameter-name,…)

• e.g., public int enrollInClass(int classID){…}

• Signature: method name and the number, type and order of its parameters

• Can also be static, therefore shared by all instances of a class

• Can be overloaded (same name, different parameters)

2

this
• Within an instance method or a constructor used to refer to current

object
• can be used to call instance variables, methods, and constructors

public class Car{
private String color;

public Car(){
this(“undefined”);

}
public Car(String color){

this.color = color;
}

3

Inheritance

• When you want to create a new class and there is already a class that

includes some of the code you want your new class to have, you can

derive the new class from the existing class à reuse code!

• We say that a class extends or inherits another class

• E.g., public class Car extends Vehicle

• Car is a subclass of Vehicle
• Vehicle is a superclass of Car

• Car IS-A Vehicle

4

Vehicle

Car

Inheritance in Java

• A subclass inherits all of the public and protected members of parent

• Hiding: same name of variables between super and subclass

• Overriding: same signature of methods between super and subclass

• Hiding if static

• Single inheritance!

• A class can only extend ONE AND ONLY ONE class

• Multilevel inheritance

• Class SUV extends class Car which extends class Vehicle

5

Vehicle

Car

SUV

super keyword

• refers to the direct parent class of the current class

• super.variable (for hidden fields à avoid altogether)

• super.method() (for overriden methods)

• super(args) à to call the constructor of the superclass

6

All classes inherit Object

• Directly (if they do not extend any other class) or indirectly

• Object class has methods (and more):

• public boolean equals (Object other)
• Default behavior returns true only if same object

• public String toString()
• Returns string representation of object – default is hexadecimal

• Does not print the string

• Typically needs to be overwritten to be useful

• public int hashCode()
• Unique identifier defined so that if a.equals(b) then a, b have same hashCode

7

final

• variable – only assigned once in its declaration or constructor
– cannot change

• method – cannot be overriden by subclass
• Methods called from constructors should generally be declared final

• class - cannot be extended

8

abstract

• Class – cannot be instantiated but can be extended

• Method – declared without an implementation
• no braces and body, just semicolon
• public abstract int enrollInClass(int classID);

• If a class has at least one abstract method then it should be
declared abstract itself

• If you extend an abstract class either declare subclass as
abstract too or implement the methods

9

Interfaces

• Contracts on how the program should work, abstracting from
implementation
• public interface Moveable{…}

• A class can implement many interfaces
• public class Car extends Vehicle implements Moveable

• Variables - automatically public, static, and final
• Methods – public (declared or default)
• Cannot be instantiated

10

Nested class

• A class defined within a class, e.g., it’s useful only within that one
• class Outer{

…
(static) class Inner{…}
}

• Can be static or non-static (inner)

11

Enum Types

• Example

• enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES}

• Operations:

• int compareTo(Suit other)

• String toString()

• int ordinal() starts with 0, not 1

• static Suit valueOf(String name)

• static Suit[] values() returns array of all values

12

Documentation

• Important for code maintainability
• This matters even for 1st week assignments

• Critical when working on a team

• Create documentation first— this is design work!

13

JavaDoc

• Document generation system
• Reads JavaDoc comment àHTML pages

• JavaDoc comment = description written in HTML + tags

• Enclosed in /** */

• Must precede class, variable, constructor or method declaration

• Read the style guide

14

http://www.quickmeme.com/meme/3ph7ed

JavaDoc

• Common tags:
• for class:

• @author author name – classes and interfaces
• @version date - classes and interfaces

• for method:
• @param param name and description – methods and constructors
• @return value returned, if any – methods
• @throws description of any exceptions thrown - methods

15

Packages

• Use them! E.g., package assignment1; … before everything else

• Package name == folder name

• Helps organize large projects e.g, java.langàfundamental

• Import a package member: import package.member;
• Import an entire package: import package.*;

16

Generics

• Enable classes and interfaces to be parameters when defining classes,
interfaces, and methods.

• class Name<T1, T2, ..., Tn> {…}
• T can be used anywhere within the class
• T can be any non-primitive

• TàType, EàElement, Kà Key, VàValue, Nànumber

• See Association class in Bailey structure5 library
• public class Association<K,V>
• Association<String, Integer> phoneBook = new
Association<String, Integer> ();

17

Random Number Generator

• class Random in java.util package w/ method
• int nextInt(int n) -- returns random 𝑘 s.t. 0	 ≤ 	𝑘	 < 	𝑛
• See bottom of pg 30 in text.

• Create Random object once:
• Random rng = new Random();

• send nextInt many times:
• int r = rng.nextInt(10);
• Repeat this step, not the creation of a new object

• See LottoHelper example.

18

