
CS 62
Spring 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 16: Binary Trees

Trees in CS

• Trees are abstract data types that store elements hierarchically

• Great when the linear, “before” and “after”, relationship is not
enough
• Certain operations are much faster too

• Hierarchical: Each element in a tree has a parent (an immediate
ancestor) and zero or more children (immediate descendant)

• Trees in CS grow upside down!

2

Definition of a tree

• A tree 𝑇 is a set of nodes that store elements based on a
parent-child relationship:
• If 𝑇 is non-empty, it has a node called the root of 𝑇, that has no

parent
• Each node 𝑣, other than the root, has a unique parent node 𝑢.

Every node with parent 𝑢	is a child of 𝑢.

3

Recursive definition of a tree

• A tree 𝑇 is either:
• Empty or
• Consists of a node 𝑟, called the root node of 𝑇, and a (possibly

empty) disjoint set of trees, called its subtrees, whose roots are the
children of 𝑟. These trees are disjoint from each other and the root.

4

Example: Unix File System

5

/

bin dev etc tmp public usr

bin lib local tmp

home

apapoutsaki wdevanny

root!

Example: Binary Search Tree

K, C, A, N, B, V, F, U, D, H, M

6

Example: Expression Tree

7

• If node is a leaf, then value is variable or constant
• If node is internal, then value calculated by applying

operations on its children

• [𝐴 ∗ (𝐵 − 𝐶)] + (𝐷/~𝐸)

Family Tree Terminology

8

• Edge is a pair of nodes s.t. one is the parent of the other e.g., (K,C)
• Parent node is directly above child node:
• K is parent to C, N.

• Sibling node has same parent:
• A, F

• K is ancestor of B
• B is descendant of K
• Node plus all descendants

gives subtree
• Nodes without successors are called leaves or external. The rest are

called internal
• A set of trees is called a forest

More Terminology

9

• Simple path is series of distinct nodes
s.t. there is edge between successive
nodes.

• Path length = # edges in path
• Height of node = length of longest

path to a leaf
• Height of tree = height of root
• Degree of node is # of children
• Degree of tree (arity) = max degree of

any its nodes
• Binary tree has arity ≤ 2.

Even More Terminology

10

• Level/depth of node defined
recursively:
• Root is at level 0
• Level of any other node is one greater

than level of parent

• Level of node is also length of path
from root to the node or number of
ancestors

• Height of node defined recursively:
• If node is leaf then 0
• Else height is max height of child + 1

But wait, there’s more!

A tree is ordered if there is a meaningful linear order among the children
of each node, e.g., when modeling books.

In contrast, when we’re modeling an organization tree is unordered.

A binary tree is full (or proper) if every node has 0 or 2 children

A complete tree has minimal height and any holes in tree would appear in
last level to right, i.e. all nodes are as far left as possible.

In a perfect binary tree all internal nodes have two children, ie. all leaves
are at the same level.

A tree is height balanced iff at every node the difference in heights of
subtrees is no greater than one and both left and right subtrees are
balanced.

11

12http://code.cloudkaksha.org/binary-tree/types-binary-tree

13

https://cs.stackexchange.com/questions/54171/is-a-balanced-binary-tree-a-complete-binary-tree

Counting

14

• Lemma: if 𝑇 is a binary tree, then at
level 𝑘, 𝑇	has ≤ 	2𝑘	nodes.

• Theorem: If 𝑇 has height ℎ, then
of nodes 𝑛 in 𝑇:
ℎ + 1 ≤ 𝑛 ≤ 	2<=> 	− 1.

• Equivalently, if 𝑇 has n nodes then
log 𝑛 + 1 − 1 ≤ ℎ ≤ 𝑛	 − 	1

Binary Trees in Java

• No implementation in standard Java libraries
• structure5 has BinaryTree<E> class, but no interface

(though we provide one!).
• Like doubly-linked list:
• value: E
• parent, left, right: BinaryTree<E>

15

Binary Tree ADT

public interface BinaryTreeInterface<E> {
public BinaryTreeInterface<E> left
public BinaryTreeInterface<E> right
public BinaryTreeInterface<E> parent();
public E value;

//getters, setters, iterators and other helper methods
}

This is just an example interface, structure5.BinaryTree doesn’t implement it!

16

Linked Representation

17

rightleft

parent

element

Tree Traversals

• Traversals:
• Pre-Order: root, left subtree, right subtree
• In-Order: left subtree, root, right subtree
• Post-Order: left subtree, right subtree, root

• Most algorithms have two parts:
• Build tree
• Traverse tree, performing operations on nodes

18

Tree traversals

• Pre-order: K C A B F D H N M V U
• In-order: A B C D F H K M N U V
• Post-order: B A D H F C M U V N K

19

