
CS 62
Spring 2018

Alexandra Papoutsaki & William Devanny

http://www.cs.pomona.edu/classes/cs062

Lecture 1: Overview &
Intro to Java

1

https://commons.wikimedia.org/w/index.php?curid=8004317

Welcome!

2

Who we are:

Alexandra Papoutsaki William Devanny

David Ahia Emily Chen

3

Arianna ChenAlia Buckner

Kayla Cummings Gloria Liou Sarp MisogluMatthew Paik

Index Cards

•Write down the questions you have as you go

•Question answered? Strikethrough

• I will collect the feedback at the end of class

4

Why take CS62?

• How to implement algorithms and data structures in
Java.

• How to design large programs (in object-oriented style)
so that it is easy to modify them.

• How to analyze complexity of alternative
implementations of problems.

5

Sample Problems

• Find the shortest path from Claremont to Chicago on

interstate system (and do it efficiently).

6

Google maps

Sample Problems

• Schedule final exams so there are no conflicts.

7

my.pomona.edu

Sample Problems

•Design and implement a scientific calculator.

8

web2.0calc

Sample Problems

•Design and implement a simulator that lets you study

traffic flow in a city or airport.

9

airtopsoft

Your responsibilities

• Skim reading in advance of lecture.

• After lectures, review notes and study examples carefully

until you understand them.

• Come to labs prepared.

• Don’t remain confused. Faculty and TAs are here to help.

• Follow academic integrity guidelines

10

Assignments

• Lab work:
• Learn tools and prepare work for weekly assignments.

• Lab attendance is mandatory! No lab today!!!

• Weekly assignment is separate
• Programs generally are due on Sunday nights.

• See late policy on syllabus. 3"% penalty per day late.

• Daily homework
• Not collected, but often on regular Friday quizzes.

• No quiz this Friday!

11

Text

• Java Structures, 7� edition, by Duane Bailey

• available online for free

• http://www.cs.williams.edu/~bailey/JavaStructures/Book.html

• Various online resources

12

Slides

•Will generally be available before class

• with code, where applicable

• Designed for class presentation, not for complete notes.

• Will need to take notes (perhaps on slides).

• No laptops or other electronics open in class

• If you have a disability affecting this, come see me.

13

Prerequisite

• Officially, CS 52 at Pomona

• Knowledge of Java equivalent to CS 51 at Pomona or CMC

or the AP Test with 4 or 5.

• not CS 5 from HMC or CS 30 from Pomona!

• Come see one of faculty if having any questions

• Assume comfortable with classes & objects, recursion,

multi-dimensional arrays, etc. in Java

14

Heavy Workload

• students spend average of 8+ hours outside of class.

•… but not “weeder”

•Must both learn practical (programming) skills and

more theoretical analysis skills

• Learn about tools to become better programmer

• Be ready to answer “interview questions”

15

Grading Policy

• We drop the two quizzes with the lowest grade
• Keep this option for real emergencies and unpredictable events

16

Weekly Programming Assignments 35%

Exams: Total: 55%

Midterms: 15% each

Final Exam: 25%

In-lab exercises and quizzes 10%

Total: 100%

See online syllabus for other important information!

Using Github does not mean you can make your assignments

publicly available

http://www.cs.pomona.edu/classes/cs062

17

Object-Oriented Design

•Objects are building blocks.

• Programs are collections of interacting objects.

•Objects cooperate to compute solutions or complete

tasks.

•Objects communicate via sending messages.

18

The ticketing system in a movie theatre

19http://www.trover.com/d/MHOV-laemles-claremont-5-theatres-claremont-california

Objects

• Objects can model objects from world:

• Physical things

• e.g., car, student, card, deck of cards

• Concepts

• e.g., meeting, date

• Processes

• e.g., sorting, simulations

20

More objects

•Objects have:

• Properties, e.g., color, model, manufacturer

• Capabilities, e.g., drive, stop, admit passenger

•Objects are responsible for knowing how to perform

actions.

• Commands: change object’s properties, (e.g., set speed)

• Queries: respond based on object’s properties (e.g., how fast?)

21

Even more objects

• Properties typically implemented as “fields” or “instance

variables”
• Affect how objects reacts to messages

• Can be:

• Attributes, e.g., color

• Components, e.g., door

• Associations, e.g., driver

• Capabilities as “methods”

• Invoked by sending messages

22

Quick Java Review

23

Primitive Data Types

• char ,	int,	byte,	short,	long , double,	float,	boolean

• Use a small amount of memory to represent a single item of data

• All data of same primitive data type use the same amount of

memory

• Cannot be used to instantiate type variables, that is no new

• Have corresponding object “wrapper” types:

• Integer,	Double,	Float,	Boolean, etc.

24

Objects

• Any data type that is not a primitive

• You already know String
• Thousands more coming with Java by default

• You can create your own with the new keyword

•Contain data and methods

• Respond to messages

25

Classes

• Classes are templates for objects
• The data type of that kind of object

• Constructor
• Have the same name with the class
• generate new distinct objects

• new Car("Toyota")
• Specify all fields and methods – public and non-public

• May be used as basis for more refined classes via inheritance
• class Car extends Vehicle

26

Access modifiers

27

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

Default (nothing!) Y Y N N

private Y N N N

Instance Variables

• or member variables or fields
• Declared in a class, but outside any method, constructor or

block
• Each object has its own copy of the variable!
• Invoked as: myObject.variableName

28

Static Variables

• or class variables
• static means constant, i.e. it will be constant for all instances of

the class
• cannot be defined in method body
• Invoked as: myClass.variableName

29

Local Variables

• Declared in method, constructor or block
• Destroyed after the execution of the method
• No access modifier

• What about these variables?

30

public class Student {
private String name;
private int id;

public static int numberOfStudents=0;
}

