CS 62 Quiz

Binary Search Tree Median
Mawhorter Spring 2017

(Please write your name at the bottom of the back page of this quiz)
(Don’t forget part 2 on the back.)
1. Given a binary search tree, one operation that might be useful is a method for finding the
median element (the element that would be in the middle if the items in the tree were in a
sorted list). The code below implements just such an operation non-recursively; fill in the
blanks so that it correctly returns the median element (you can assume that there are an
odd number of elements in the tree)

(Recall that a BinaryTree supports methods inculding left () to get the left subtree, right ()
to get the right subtree, size() to return the size in O(1) time, and value() to return the
value of a node.)

public E findMedian(BinaryTree<E> tree) {
int left = tree.left().size();
// What ts our target for the # of nodes on the left?
// (it's okay if this only works for odd-sized trees)

int target = _______ ;
BinaryTree<E> here = tree;
while (left != target) {
if (left < target) {
here = here.right();
// update left: how many more nodes are now on the left?

// mote: be careful you're not off by 1

left += ;
} else { // left > target
here = here.left();
// update left: how many nodes that were left are now right?

// mote: be careful you're not off by 1

// what do we return?

return 5



2. What is the big-O run time of findMedian in terms of the size of the tree, n?

(Give one answer for the case where your binary tree is a stick, and another for the case
where your binary tree is somewhat balanced (such that its height is O(log n)). Are these the
same or different?)

Name:




