
CS062 

DATA STRUCTURES AND ADVANCED PROGRAMMING

9: Stacks, Queues, and Iterators

BASIC DATA STRUCTURES

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition 

Alexandra Papoutsaki 
she/her/hers



TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks


▸ Queues


▸ Applications


▸ Java Collections


▸ Iterators

2

Some slides adopted from Algorithms 4th Edition and Oracle tutorials



STACKS

Stacks

3

  

‣ Dynamic linear data structures.

‣ Items are inserted and removed following the LIFO paradigm.

‣ LIFO: Last In, First Out.

‣ Similar to lists, there is a sequential nature to the data.

‣ Remove the most recent item.


‣ Metaphor of cafeteria plate dispenser.

‣ Want a plate? Pop the top plate.

‣ Add a plate? Push it to make it the new top.

‣ Want to see the top plate? Peek.

‣ We want to make push and pop as time efficient as possible

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Example of stack operations

4

  

push To be or not to - be - - that - - - is

pop to be not that or be

  

To

be

To
be
or

To
be
or
not

To
be
or
not
to

To
be
or
not

To
be
or
not

To
be
or
not

To
be
or

To
be
or
that

To
be
or

To
be

To To
is

To
be

push to top pop from top

Out
First
In
Last

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Implementing stacks with ArrayLists

5

  

‣ Where should the top go to make push and pop as efficient as 
possible?


‣ The end/rear represents the top of the stack.

‣ To push an item add(Item item). 

‣ Adds at the end. Average .


‣ To pop an item remove(). 

‣ Removes and returns the item from the end. Average .


‣ To peek get(size()-1).

‣ Retrieves the last item. .


‣ If the front/beginning were to represent the top of the stack, then:

‣ Push, pop would be  and peek .

O(1)

O(1)

O(1)

O(n) O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Implementing stacks with singly linked lists

6

  

‣ Where should the top go to make push and pop as efficient as 
possible?


‣ The head represents the top of the stack.

‣ To push an item add(Item item).

‣ Adds at the head. .


‣ To pop an item remove().

‣ Removes and retrieves from the head. .


‣ To peek get(0).

‣ Retrieves the head. .


‣ If the tail were to represent the top of the stack, then:

‣ Push, pop, peek would all be .

O(1)

O(1)

O(1)

O(n)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Implementing stacks with doubly linked lists

7

  

‣ Where should the top go to make push and pop as efficient as possible?

‣ The head represents the top of the stack.

‣ To push an item addFirst(Item item).

‣ Adds at the head. .


‣ To pop an item removeFirst().

‣ Removes and retrieves from the head. .


‣ To peek get(0).

‣ Retrieves the head’s item. .


‣ Unnecessary memory overhead with extra pointers. 

‣ If the tail were to represent the top of the stack, we’d need to use 
addLast(Item item), removeLast(), and get(size()-1) to have 

 complexity.

O(1)

O(1)

O(1)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Implementation of stacks

8

  

‣ Linear.java: simple interface with add, remove, peek, 
isEmpty, and size methods.


‣ Stack.java: simple interface with push, pop, peek, isEmpty, 
and size methods. Extends Linear interface.


‣ ArrayListStack.java: for implementation of stacks with 
ArrayLists. Must implement methods of Stack interface (and 
as a consequence of Linear interface).


‣ LinkedStack.java: for implementation of stacks with singly 
linked lists. Must implement methods of Stack interface (and 
as a consequence of Linear interface).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks


▸ Queues


▸ Applications


▸ Java Collections


▸ Iterators

9



QUEUES

Queues

10

  

‣ Dynamic linear data structures.

‣ Items are inserted and removed following the FIFO paradigm.

‣ FIFO: First In, First Out.

‣ Similar to lists, there is a sequential nature to the data.

‣ Remove the least recent item.


‣ Metaphor of a line of people waiting to buy tickets.

‣ Just arrived? Enqueue person to the end of line.

‣ First to arrive? Dequeue person at the top of line.

‣ We want to make enqueue and dequeue as time efficient as 

possible.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Example of queue operations

11

enqueue To be or not to - be - - that - - - is

dequeue To be or not to be

 

To

be

or
be
To

not
or
be
To

to be
to
not
or

be
to
not

that
be
that that is

that
be
To

dequeue from beginning

enqueue at end

Out
First
In

First

not
or
be
To

not
or
be

to be
to
not
or

be
to
not

be
to

that

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Implementing queue with ArrayLists

12

  

‣ Where should we enqueue and dequeue items?

‣ To enqueue an item add() at the end of arrayList. Average 

.

‣ To dequeue an item remove(0). .

‣ What if we add at the beginning and remove from end?

‣ Now dequeue is cheap ( ) but enqueue becomes 

expensive ( ).

O(1)
O(n)

O(1)
O(n)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Implementing queue with singly linked list

13

  

‣ Where should we enqueue and dequeue items?

‣ To enqueue an item add() at the head of SLL ( ).

‣ To dequeue an item remove(size()-1) ( ).


‣ What if we add at the end and remove from beginning?

‣ Now dequeue is cheap ( ) but enqueue becomes 

expensive ( ).

‣  if we have a tail pointer. 

‣ Simple modification in code, big gains!

‣ Version that recommended textbook follows.

O(1)
O(n)

O(1)
O(n)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Implementing queue with doubly linked list

14

  

‣ Where should we enqueue and dequeue items?

‣ To enqueue an item addLast() at the tail of DLL ( ).

‣ To dequeue an item removeFirst() ( ).

‣ What if we add at the head and remove from tail?

‣ Both are !

O(1)
O(1)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUE

Implementation of queues

15

  

‣ Linear.java: simple interface that ensures that we can use stacks 
and queues interchangeably through the add, remove, peek, 
isEmpty, and size methods.


‣ Queue.java: simple interface with enqueue, dequeue, peek, 
isEmpty, and size methods. Extends Linear interface.


‣ ArrayListQueue.java: for implementation of queues with 
ArrayLists. Must implement methods of Queue interface (and as a 
consequence of Linear interface).


‣ LinkedQueue.java: for implementation of queues with doubly 
linked lists. Must implement methods of Queue interface (and as a 
consequence of Linear interface).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks


▸ Queues


▸ Applications


▸ Java Collections


▸ Iterators

16



APPLICATIONS

Stack applications

17

  

‣ Java Virtual Machine.

‣ Basic mechanisms in compilers, interpreters (see CS101).

‣ Back button in browser.

‣ Undo in word processor.

‣ Infix expression evaluation (Dijskstra’s algorithm with two 

stacks).

‣ Postfix expression evaluation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


  
https://algs4.cs.princeton.edu/lectures/demo/13DemoDijkstraTwoStack.mov

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


APPLICATIONS

Postfix expression evaluation example

19

  

Example: (52 - ((5 + 7) * 4) ⇒ 52 5 7 + 4 * -

7
→ → →

5                 5

52 push(52) 52            push(5) 52 push(7)

v1=pop()=7                             4           v1=pop()=4

12 v2=pop()=5          → 12                           → 48          v2=pop()=12

52         push(v2+v1)=push(12)          52          push(4)                     52          push(v2*v1)=48  

   

                 v1=pop()=48
                 v2=pop()=52                →            peek()=4 
       4        push(v2-v1)=4

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


APPLICATIONS

Queue applications

20

  

‣ Spotify playlist.

‣ Data buffers (netflix, Hulu, etc.).

‣ Asynchronous data transfer (file I/O, sockets).

‣ Requests in shared resources (printers).

‣ Traffic analysis.

‣ Waiting times at calling center.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks


▸ Queues


▸ Applications


▸ Java Collections


▸ Iterators

21



JAVA COLLECTIONS

The Java Collections Framework

22

 https://en.wikipedia.org/wiki/Java_collections_framework  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework


JAVA COLLECTIONS

Deque in Java Collections

23

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ Do not use Stack. Obsolete class.


▸ Queue is an interface… 


▸ It’s recommended to use the Deque interface instead. 


▸ Double-ended queue (can add and remove from either end).


   java.util.Deque;

   public interface Deque<E> extends Queue<E>
▸ You can choose between LinkedList and ArrayDeque 

implementations.


▸Deque deque = new ArrayDeque(); //preferable

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks


▸ Queues


▸ Applications


▸ Java Collections


▸ Iterators

24



ITERATORS

Iterator Interface

25

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ Interface that allows us to traverse a collection one 
element at a time.


public interface Iterator<E> { 
  //returns true if the iteration has more elements
  //that is if next() would return an element instead of throwing an exception
  boolean hasNext(); 
  
  //returns the next element in the iteration
  //post: advances the iterator to the next value
  E next(); 
  
  //removes the last element that was returned by next
  default void remove(); //optional, better avoid it altogether 
}

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html


ITERATORS

Iterator Example

26

List<Integer> myList = new ArrayList<Integer>();
//… operations on myList

Iterator<Integer> listIterator = myList.iterator(); 

while(listIterator.hasNext()){ 
  Integer elt = listIterator.next();  
  System.out.println(elt); 
}



ITERATORS

Java8 introduced lambda expressions

27

‣ Iterator interface now contains a new method. 

‣ default void forEachRemaining(Consumer<? super E> action)  

‣ Performs the given action for each remaining element until all elements have been 
processed or the action throws an exception.


‣ listIterator.forEachRemaining(s -> System.out.println(s));

‣ or
‣ listIterator.forEachRemaining(System.out::println);



ITERATORS

Iterable Interface

28

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

▸ Interface that allows an object to be the target of a for-each loop:


for(String elt: myList){ 
  System.out.println(elt); 
}

interface Iterable<E>{
  //returns an iterator over elements of type E
  Iterator<E> iterator();

  //Performs the given action for each element of the Iterable until all elements have  
  //been processed or the action throws an exception.

  default void forEach(Consumer<? super E> action);

}
myList.forEach(elt-> System.out.println(elt));  
myList.forEach(System.out::println);

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html


ITERATORS

How to make your data structures iterable?

1. Implement Iterable interface.


2. Make a private class that implements the Iterator 
interface. 


3. Override iterator() method to return an instance of 
the private class.



ITERATORS

Example: making ArrayList iterable

public class ArrayList<Item> implements Iterable<Item> {
     //…

public Iterator<Item> iterator() {

return new ArrayListIterator();  
     }

private class ArrayListIterator implements Iterator<Item> {

private int i = 0;

public boolean hasNext() {
              return i < size;

}

public Item next() {

return data[i++];

}

public void remove() {
               throw new UnsupportedOperationException();

}

}



ITERATORS

Traversing ArrayList

‣ All valid ways to traverse ArrayList and print its elements one by one.


       // because it implements the Iterable interface
       for(int elt:myList) {

System.out.println(elt);
}

       // because it implements the Iterable interface
   myList.forEach(elt -> System.out.println(elt));
   myList.forEach(elt -> {System.out.println(elt);});
   myList.forEach(System.out::println);

       // because it contains a private class that implements the Iterator interface
   Iterator<Integer> listIterator = myList.iterator();
   while(listIterator.hasNext()){ 

            Integer elt = listIterator.next(); 
            System.out.println(elt); 
        }

        // because it contains a private class that implements the Iterator interface
   Iterator<Integer> listIterator = myList.iterator();
   listIterator.forEachRemaining(elt-> System.out.println(elt));
   listIterator.forEachRemaining(elt->{System.out.println(elt);});  

       listIterator.forEachRemaining(System.out::println);



TODAY’S LECTURE IN A NUTSHELL

Lecture 9: Stacks, Queues, and Iterators

▸ Stacks


▸ Queues


▸ Applications


▸ Java Collections


▸ Iterators

32



ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Oracle’s guides:


▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html


▸ Deque: https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html


▸ ArrayList: https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html 


▸ Iterator: https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html


▸ Iterable: https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html


▸ Recommended Textbook:


▸ Chapter 1.3 (Page 126–157)


▸ Recommended Textbook Website:


▸ Stacks and Queues: https://algs4.cs.princeton.edu/13stacks/

33

Practice Problems:
▸ 1.3.2–1.3.8, 1.3.32–1.3.33

Code
▸ Lecture 9 code

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://algs4.cs.princeton.edu/13stacks/
https://github.com/pomonacs622023fa/code/tree/main/Lecture9

