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Some slides adopted from Algorithms 4th Edition and Oracle tutorials



STACKS

Stacks
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‣ Dynamic linear data structures.

‣ Items are inserted and removed following the LIFO paradigm.

‣ LIFO: Last In, First Out.

‣ Similar to lists, there is a sequential nature to the data.

‣ Remove the most recent item.


‣ Metaphor of cafeteria plate dispenser.

‣ Want a plate? Pop the top plate.

‣ Add a plate? Push it to make it the new top.

‣ Want to see the top plate? Peek.

‣ We want to make push and pop as time efficient as possible

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Example of stack operations

4

  

push To be or not to - be - - that - - - is

pop to be not that or be
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https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Implementing stacks with ArrayLists
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‣ Where should the top go to make push and pop as efficient as 
possible?


‣ The end/rear represents the top of the stack.

‣ To push an item add(Item item). 

‣ Adds at the end. Average .


‣ To pop an item remove(). 

‣ Removes and returns the item from the end. Average .


‣ To peek get(size()-1).

‣ Retrieves the last item. .


‣ If the front/beginning were to represent the top of the stack, then:

‣ Push, pop would be  and peek .

O(1)

O(1)

O(1)

O(n) O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Implementing stacks with singly linked lists
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‣ Where should the top go to make push and pop as efficient as 
possible?


‣ The head represents the top of the stack.

‣ To push an item add(Item item).

‣ Adds at the head. .


‣ To pop an item remove().

‣ Removes and retrieves from the head. .


‣ To peek get(0).

‣ Retrieves the head. .


‣ If the tail were to represent the top of the stack, then:

‣ Push, pop, peek would all be .

O(1)

O(1)

O(1)

O(n)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Implementing stacks with doubly linked lists
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‣ Where should the top go to make push and pop as efficient as possible?

‣ The head represents the top of the stack.

‣ To push an item addFirst(Item item).

‣ Adds at the head. .


‣ To pop an item removeFirst().

‣ Removes and retrieves from the head. .


‣ To peek get(0).

‣ Retrieves the head’s item. .


‣ Unnecessary memory overhead with extra pointers. 

‣ If the tail were to represent the top of the stack, we’d need to use 
addLast(Item item), removeLast(), and get(size()-1) to have 

 complexity.

O(1)

O(1)

O(1)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Implementation of stacks
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‣ Linear.java: simple interface with add, remove, peek, 
isEmpty, and size methods.


‣ Stack.java: simple interface with push, pop, peek, isEmpty, 
and size methods. Extends Linear interface.


‣ ArrayListStack.java: for implementation of stacks with 
ArrayLists. Must implement methods of Stack interface (and 
as a consequence of Linear interface).


‣ LinkedStack.java: for implementation of stacks with singly 
linked lists. Must implement methods of Stack interface (and 
as a consequence of Linear interface).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
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QUEUES

Queues
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‣ Dynamic linear data structures.

‣ Items are inserted and removed following the FIFO paradigm.

‣ FIFO: First In, First Out.

‣ Similar to lists, there is a sequential nature to the data.

‣ Remove the least recent item.


‣ Metaphor of a line of people waiting to buy tickets.

‣ Just arrived? Enqueue person to the end of line.

‣ First to arrive? Dequeue person at the top of line.

‣ We want to make enqueue and dequeue as time efficient as 

possible.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Example of queue operations
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enqueue To be or not to - be - - that - - - is

dequeue To be or not to be
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QUEUES

Implementing queue with ArrayLists
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‣ Where should we enqueue and dequeue items?

‣ To enqueue an item add() at the end of arrayList. Average 

.

‣ To dequeue an item remove(0). .

‣ What if we add at the beginning and remove from end?

‣ Now dequeue is cheap ( ) but enqueue becomes 

expensive ( ).

O(1)
O(n)

O(1)
O(n)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Implementing queue with singly linked list
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‣ Where should we enqueue and dequeue items?

‣ To enqueue an item add() at the head of SLL ( ).

‣ To dequeue an item remove(size()-1) ( ).


‣ What if we add at the end and remove from beginning?

‣ Now dequeue is cheap ( ) but enqueue becomes 

expensive ( ).

‣  if we have a tail pointer. 

‣ Simple modification in code, big gains!

‣ Version that recommended textbook follows.

O(1)
O(n)

O(1)
O(n)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Implementing queue with doubly linked list
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‣ Where should we enqueue and dequeue items?

‣ To enqueue an item addLast() at the tail of DLL ( ).

‣ To dequeue an item removeFirst() ( ).

‣ What if we add at the head and remove from tail?

‣ Both are !

O(1)
O(1)

O(1)

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUE

Implementation of queues
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‣ Linear.java: simple interface that ensures that we can use stacks 
and queues interchangeably through the add, remove, peek, 
isEmpty, and size methods.


‣ Queue.java: simple interface with enqueue, dequeue, peek, 
isEmpty, and size methods. Extends Linear interface.


‣ ArrayListQueue.java: for implementation of queues with 
ArrayLists. Must implement methods of Queue interface (and as a 
consequence of Linear interface).


‣ LinkedQueue.java: for implementation of queues with doubly 
linked lists. Must implement methods of Queue interface (and as a 
consequence of Linear interface).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
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APPLICATIONS

Stack applications
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‣ Java Virtual Machine.

‣ Basic mechanisms in compilers, interpreters (see CS101).

‣ Back button in browser.

‣ Undo in word processor.

‣ Infix expression evaluation (Dijskstra’s algorithm with two 

stacks).

‣ Postfix expression evaluation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


  
https://algs4.cs.princeton.edu/lectures/demo/13DemoDijkstraTwoStack.mov

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


APPLICATIONS

Postfix expression evaluation example
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Example: (52 - ((5 + 7) * 4) ⇒ 52 5 7 + 4 * -

7
→ → →

5                 5

52 push(52) 52            push(5) 52 push(7)

v1=pop()=7                             4           v1=pop()=4

12 v2=pop()=5          → 12                           → 48          v2=pop()=12

52         push(v2+v1)=push(12)          52          push(4)                     52          push(v2*v1)=48  

   

                 v1=pop()=48
                 v2=pop()=52                →            peek()=4 
       4        push(v2-v1)=4

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


APPLICATIONS

Queue applications
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‣ Spotify playlist.

‣ Data buffers (netflix, Hulu, etc.).

‣ Asynchronous data transfer (file I/O, sockets).

‣ Requests in shared resources (printers).

‣ Traffic analysis.

‣ Waiting times at calling center.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
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JAVA COLLECTIONS

The Java Collections Framework

22

 https://en.wikipedia.org/wiki/Java_collections_framework  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework


JAVA COLLECTIONS

Deque in Java Collections

23

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ Do not use Stack. Obsolete class.


▸ Queue is an interface… 


▸ It’s recommended to use the Deque interface instead. 


▸ Double-ended queue (can add and remove from either end).


   java.util.Deque;

   public interface Deque<E> extends Queue<E>
▸ You can choose between LinkedList and ArrayDeque 

implementations.


▸Deque deque = new ArrayDeque(); //preferable

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
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ITERATORS

Iterator Interface

25

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ Interface that allows us to traverse a collection one 
element at a time.


public interface Iterator<E> { 
  //returns true if the iteration has more elements
  //that is if next() would return an element instead of throwing an exception
  boolean hasNext(); 
  
  //returns the next element in the iteration
  //post: advances the iterator to the next value
  E next(); 
  
  //removes the last element that was returned by next
  default void remove(); //optional, better avoid it altogether 
}

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html


ITERATORS

Iterator Example

26

List<Integer> myList = new ArrayList<Integer>();
//… operations on myList

Iterator<Integer> listIterator = myList.iterator(); 

while(listIterator.hasNext()){ 
  Integer elt = listIterator.next();  
  System.out.println(elt); 
}



ITERATORS

Java8 introduced lambda expressions

27

‣ Iterator interface now contains a new method. 

‣ default void forEachRemaining(Consumer<? super E> action)  

‣ Performs the given action for each remaining element until all elements have been 
processed or the action throws an exception.


‣ listIterator.forEachRemaining(s -> System.out.println(s));

‣ or
‣ listIterator.forEachRemaining(System.out::println);



ITERATORS

Iterable Interface

28

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

▸ Interface that allows an object to be the target of a for-each loop:


for(String elt: myList){ 
  System.out.println(elt); 
}

interface Iterable<E>{
  //returns an iterator over elements of type E
  Iterator<E> iterator();

  //Performs the given action for each element of the Iterable until all elements have  
  //been processed or the action throws an exception.

  default void forEach(Consumer<? super E> action);

}
myList.forEach(elt-> System.out.println(elt));  
myList.forEach(System.out::println);

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html


ITERATORS

How to make your data structures iterable?

1. Implement Iterable interface.


2. Make a private class that implements the Iterator 
interface. 


3. Override iterator() method to return an instance of 
the private class.



ITERATORS

Example: making ArrayList iterable

public class ArrayList<Item> implements Iterable<Item> {
     //…

public Iterator<Item> iterator() {

return new ArrayListIterator();  
     }

private class ArrayListIterator implements Iterator<Item> {

private int i = 0;

public boolean hasNext() {
              return i < size;

}

public Item next() {

return data[i++];

}

public void remove() {
               throw new UnsupportedOperationException();

}

}



ITERATORS

Traversing ArrayList

‣ All valid ways to traverse ArrayList and print its elements one by one.


       // because it implements the Iterable interface
       for(int elt:myList) {

System.out.println(elt);
}

       // because it implements the Iterable interface
   myList.forEach(elt -> System.out.println(elt));
   myList.forEach(elt -> {System.out.println(elt);});
   myList.forEach(System.out::println);

       // because it contains a private class that implements the Iterator interface
   Iterator<Integer> listIterator = myList.iterator();
   while(listIterator.hasNext()){ 

            Integer elt = listIterator.next(); 
            System.out.println(elt); 
        }

        // because it contains a private class that implements the Iterator interface
   Iterator<Integer> listIterator = myList.iterator();
   listIterator.forEachRemaining(elt-> System.out.println(elt));
   listIterator.forEachRemaining(elt->{System.out.println(elt);});  

       listIterator.forEachRemaining(System.out::println);
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Oracle’s guides:


▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html


▸ Deque: https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html


▸ ArrayList: https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html 


▸ Iterator: https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html


▸ Iterable: https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html


▸ Recommended Textbook:


▸ Chapter 1.3 (Page 126–157)


▸ Recommended Textbook Website:


▸ Stacks and Queues: https://algs4.cs.princeton.edu/13stacks/

33

Practice Problems:
▸ 1.3.2–1.3.8, 1.3.32–1.3.33

Code
▸ Lecture 9 code

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://algs4.cs.princeton.edu/13stacks/
https://github.com/pomonacs622023fa/code/tree/main/Lecture9

