
CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

6: ArrayLists

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

BASIC DATA STRUCTURES

Alexandra Papoutsaki 
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Resizable Arrays

▸ Background

▸ ArrayList

▸ Java Collections

▸ Theory of Algorithms

▸ Running Time of ArrayList operations

2

Some slides adopted from Algorithms 4th Edition and Oracle tutorials

BACKGROUND

Why do we need data structures?

▸ To organize and store data so that we can perform efficient operations on them based on our
needs.

▸ Imagine walking to an unorganized library and trying to find your favorite title or books
from your favorite author.

▸ We can define efficiency in different ways.

▸ Time: How fast can we perform certain operations on a data structure?

▸ Space: How much memory do we need to organize our data in a data structure?

▸ There is no data structure that fits all needs.

▸ That’s why we’re spending a semester looking at different data structures.

▸ So far, the only data structure we have encountered is arrays.

▸ And ArrayList, but informally.

3

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

BACKGROUND

Types of operations on data structures

▸ Insertion: adding a new element in a data structure.

▸Deletion: Removing (and possibly returning) an element.

▸Searching: Searching for a specific data element.

▸Replacement: Replacing an existing element with a new one (and possibly returning old).

▸Traversal: Going through all the elements.

▸Sorting: Sorting all elements in a specific way.

▸Check if empty: Check if data structure contains any elements. 

▸Not a single data structure does all these things efficiently.

▸You need to know both the kind of data you have, the different operations you will need to
perform on them, and any technical limitations to pick an appropriate data structure.

4

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

BACKGROUND

Linear vs non-linear data structures

▸ Linear: elements arranged in a linear sequence based on a specific order.

▸ E.g., Arrays, ArrayLists, linked lists, stacks, queues.

▸ Linear memory allocation: all elements are placed in a contiguous block
of memory. E.g., arrays and ArrayLists.

▸ Use of pointers/links: elements don’t need to be placed in contiguous
blocks. The linear relationship is formed through pointers. E.g., singly and
doubly linked lists.

▸ Non-linear: elements arranged in non-linear, mostly hierarchical relationship.

▸ E.g., trees and graphs.

5

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Resizable Arrays

▸ Background

▸ ArrayList

▸ Java Collections

▸ Theory of Algorithms

▸ Running Time of ArrayList operations

6

ARRAYLIST

Limitations of arrays

7

‣ Fixed-size.

‣ Do not work well with Generics.

‣ E[] myArray = (E[]) new Object[capacity];

‣ Adding or removing from the middle is hard.

‣ Limited functionality (Java requires the use of Arrays class for

manipulating arrays, such as sorting and searching).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

ArrayList (or dynamic/growable/resizable/mutable array)

8

‣ Dynamic linear data structure that is zero-indexed.

‣ Sequential data structure that requires consecutive memory

cells.

‣ Implemented with an underlying array of a specific capacity.

‣ But the user does not see that!

CS062 ROCKS !

0 1 2 3 4 5 6 7

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Standard Operations of ArrayList<Item> class

9

‣ ArrayList(): Constructs an empty ArrayList with an initial capacity of 2 (can vary
across implementations, another common initial capacity is 10).

‣ ArrayList(int capacity): Constructs an empty ArrayList with the specified initial
capacity.

‣ isEmpty(): Returns true if the ArrayList contains no items.

‣ size(): Returns the number of items in the ArrayList.

‣ get(int index): Returns the item at the specified index.

‣ add(Item item): Appends the item to the end of the ArrayList.

‣ add(int index, Item item): Inserts the item at the specified index and shifts the

element currently at that position (if any) and any subsequent elements to the right
(adds one to their indices).

‣ Item remove(): Removes and returns the item at the end of the ArrayList.

‣ Item remove(int index): Retrieves and removes the item at the specified index.

Shifts any subsequent elements to the left (subtracts one from their indices).

‣ set(int index, Item item): Replaces the item at the specified index with the

specified item.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

ArrayLists

10

CS062 ROCKS !

0 1 2 3 4 5 6 7

Capacity = 8

Number of items = 3

What should happen?

ArrayList<String> al = new ArrayList<String>();

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

ArrayList(): Constructs an ArrayList

11

0 1

Capacity = 2

Number of items = 0

ArrayList<String> al = new ArrayList<String>();

What should happen?

al.add(“CS062”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

add(Item item):Appends the item to the end of the ArrayList

12

CS062

0 1

Capacity = 2

Number of items = 1

al.add(“CS062”);

What should happen?

al.add(“ROCKS”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

add(Item item):Appends the item to the end of the ArrayList

13

CS062 ROCKS

0 1

Capacity = 2

Number of items = 2

al.add(“ROCKS”);

What should happen?

al.add(“!”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

add(Item item):Appends the item to the end of the ArrayList

14

CS062 ROCKS

0 1

Capacity = 4

Number of items = 3

!

2 3

al.add(“!”);

- DOUBLE CAPACITY SINCE IT’S FULL

AND THEN ADD NEW ITEM

- INCREASE NUMBER OF ITEMS

What should happen?

al.add(1, “THROWS”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

add(int index, Item item):Adds item at the specified index

15

CS062 THROWS

0 1

Capacity = 4

Number of items = 4

ROCKS !

2 3

al.add(1, “THROWS”);

- SHIFT ELEMENTS TO THE RIGHT 
- ADD NEW ITEM

- INCREASE NUMBER OF ITEMS

What should happen?

al.add(3, “?”);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

add(int index, Item item):Adds item at the specified index

16

CS062 THROWS

0 1

Capacity = 8

Number of items = 5

ROCKS ?

2 3

al.add(3, “?”);

!

4 5 6 7

- DOUBLE CAPACITY SINCE IT’S FULL  
- SHIFT ELEMENTS TO THE RIGHT 
- ADD NEW ITEM

- INCREASE NUMBER OF ITEMS

What should happen?

al.remove();

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST 17

CS062 THROWS

0 1

Capacity = 8

Number of items = 4

ROCKS ?

2 3

al.remove();

4 5 6 7

What should happen?

al.remove();

remove():Retrieves and removes item from the end of ArrayList

- RETURN LAST ELEMENT

- REDUCE NUMBER OF ITEMS

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST 18

CS062 THROWS

0 1

Capacity = 8

Number of items = 3

ROCKS

2 3

al.remove();

4 5 6 7

What should happen?

al.remove();

remove():Retrieves and removes item from the end of ArrayList

- RETURN LAST ELEMENT

- REDUCE NUMBER OF ITEMS

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

remove():Retrieves and removes item from the end of ArrayList

19

CS062 THROWS

0 1

Capacity = 4

Number of items = 2

2 3

al.remove();

- REMOVE ITEM FROM THE END 
- HALVE CAPACITY WHEN 1/4 FULL

What should happen?

al.remove(0);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

remove(int index):Retrieves and removes item from specified index

20

THROWS

0 1

Capacity = 2

Number of items = 1

al.remove(0);

- REMOVE ITEM FROM INDEX

- SHIFT ELEMENTS TO THE LEFT

- HALVE CAPACITY WHEN 1/4 FULL

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Our own implementation of ArrayLists

21

‣ We will follow the recommended textbook style.

‣ It does not offer a class for this so we will build our own. On Friday, we got to

test a very similar implementation in lab!

‣ We will work with generics because we don’t want to offer multiple

implementations.

‣ We will use an array and we will keep track of how many elements we have in

our ArrayList.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

PRACTICE TIME: Instance variables and constructors

22

public class ArrayList<Item> implements Iterable<Item> {
private Item[] data; // underlying array of items
private int size; // number of items in ArrayList

/**
 * Constructs an ArrayList with an initial capacity of 2.
 */
@SuppressWarnings("unchecked")
public ArrayList() {

}

/**
 * Constructs an ArrayList with the specified capacity.
 */
@SuppressWarnings("unchecked")
public ArrayList(int capacity) {

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Instance variables and constructors

23

public class ArrayList<Item> implements Iterable<Item> {
private Item[] data; // underlying array of items
private int size; // number of items in ArrayList

/**
 * Constructs an ArrayList with an initial capacity of 2.
 */
@SuppressWarnings("unchecked")
public ArrayList() {

data = (Item[]) new Object[2];
size = 0;

}

/**
 * Constructs an ArrayList with the specified capacity.
 */
@SuppressWarnings("unchecked")
public ArrayList(int capacity) {

data = (Item[]) new Object[capacity];
size = 0;

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

PRACTICE TIME: Check if is empty and how many items

24

/**
 * Returns true if the ArrayList contains no items.
 *
 * @return true if the ArrayList does not contain any item
 */
public boolean isEmpty() {

}

/**
 * Returns the number of items in the ArrayList.
 *
 * @return the number of items in the ArrayList
 */
public int size() {

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Check if is empty and how many items

25

/**
 * Returns true if the ArrayList contains no items.
 *
 * @return true if the ArrayList does not contain any item
 */
public boolean isEmpty() {

return size == 0;
}

/**
 * Returns the number of items in the ArrayList.
 *
 * @return the number of items in the ArrayList
 */
public int size() {

return size;
}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

PRACTICE TIME: Resize underlying array’s capacity

26

/**
 * Resizes the ArrayList's capacity to the specified capacity.
 */
@SuppressWarnings("unchecked")
private void resize(int capacity) {

 //reserve a new temporary array with the provided capacity

 //copy all the elements from the old array (data) into the temporary array

 //point a to the new temporary array

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Resize underlying array’s capacity

27

/**
 * Resizes the ArrayList's capacity to the specified capacity.
 */
@SuppressWarnings("unchecked")
private void resize(int capacity) {

 //reserve a new temporary array of Items with the provided capacity
Item[] temp = (Item[]) new Object[capacity];

 //copy all the elements from the old array (data) into the temporary array
for (int i = 0; i < size; i++){

temp[i] = data[i];
 }
 //point data to the new temporary array
 data = temp;

// alternative implementation
// data = java.util.Arrays.copyOf(data, capacity);

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

PRACTICE TIME: Append an item to the end of ArrayList

28

/**
 * Appends the item to the end of the ArrayList. Doubles its capacity if necessary.
 *
 * @param item the item to be inserted
 */
public void add(Item item) {

 //check whether ArrayList is full

 //if yes, double in size

 //add the item at the end of the ArrayList and increase the counter by 1

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Append an item to the end of ArrayList

29

/**
 * Appends the item to the end of the ArrayList. Doubles its capacity if necessary.
 *
 * @param item the item to be inserted
 */
public void add(Item item) {

 //check whether ArrayList is full
if (size == data.length){

 //if yes, double in size
resize(2 * data.length);

 }
 //add the item at the end of the ArrayList and increase the counter by 1

data[size] = item;  
 size++;

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

PRACTICE TIME: Add an item at a specified index

30

/**
 * Inserts the item at the specified index. Shifts existing elements
 * to the right and doubles its capacity if necessary.
 *
 * @param index
 * the index to insert the item
 * @param item
 * the item to be inserted
 * @pre 0<=index<=size
 */
public void add(int index, Item item) {

 //check whether index in range

 //if full double size

 //shift elements to the right

 //set item to position index

 //increase number of items

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Add an item at a specified index

31

/**
 * Inserts the item at the specified index. Shifts existing elements
 * to the right and doubles its capacity if necessary.
 *
 * @param index
 * the index to insert the item
 * @param item
 * the item to be inserted
 * @pre 0<=index<=size
 */
public void add(int index, Item item) {

 //check whether index in range
 if (index > size || index < 0){

 throw new IndexOutOfBoundsException("Index " + index + " out of bounds");
 }

 //if full double size
 if (size == data.length){

resize(2 * data.length);
 }

 //shift elements to the right
 for (int i = size; i > index; i—-){

data[i] = data[i - 1];
 }
 size++;

 //set item to position index
 data[index] = item;
}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

PRACTICE TIME: Replace an item at a specified index

32

 /**
 * Replaces the item at the specified index with the specified item.
 * @param index
 * the index of the item to replace
 * @param item
 * item to be stored at specified index
 * @return the old item that was changed.
 * @pre 0<=index<size

 */
public Item set(int index, Item item) {

 //check whether index in range

 //retrieve old item at index

 //update index with new item

 //return old item

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Replace an item at a specified index

33

 /**
 * Replaces the item at the specified index with the specified item.
 * @param index
 * the index of the item to replace
 * @param item
 * item to be stored at specified index
 * @return the old item that was changed.
 * @pre 0<=index<size
 */
public Item set(int index, Item item) {

 //check whether index in range
 if (index >= size || index < 0){
 throw new IndexOutOfBoundsException("Index " + index + " out of bounds");
 }
 //retrieve old item at index

Item old = data[index];
 //update index with new item

data[index] = item;
 //return old item

return old;
}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

PRACTICE TIME: Retrieve and remove item from the end of ArrayList

34

 /**
 * Retrieves and removes the item from the end of the ArrayList.
 * @return the removed item
 * @throws NoSuchElementException if ArrayList is empty
 * @pre size>0
 */
public Item remove() {

 //if ArrayList is empty throw NoSuchElementException

 //retrieve last item after you reduce number of items by 1

 //set the position where the removed item is to null

//shrink in half to save space if number of items in ArrayList is 1/4 of its size

 //return the removed item

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Retrieve and remove item from the end of ArrayList

35

 /**
 * Retrieves and removes the item from the end of the ArrayList.
 * @return the removed item
 * @throws NoSuchElementException if ArrayList is empty
 * @pre size>0
 */
public Item remove() {

 //if ArrayList is empty throw NoSuchElementException
if (isEmpty()){

throw new NoSuchElementException("The list is empty”);
 }
 //retrieve last item after you reduce number of items by 1

size—-;
 Item item = data[size];
 //set the position where the removed item is to null

data[size] = null; // Avoid loitering (see text).

//shrink in half to save space if number of items in ArrayList is 1/4 of its size
if (size > 0 && size == data.length / 4)

resize(data.length / 2);
 //return the removed item

return item;
}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

PRACTICE TIME: Retrieve and remove item from a specific index

36

 /**
 * Retrieves and removes the item at the specified index.
 *
 * @param index
 * the index of the item to be removed
 * @return the removed item
 * @pre 0<=index<size
 */
public Item remove(int index) {

 //check whether index in range

 //retrieve Item at index

 //reduce number of items by 1

 //shift all items from index till the end one position to the left

 //set the last item (since they have been shifted to the left), to null

 //shrink in half to save space if number of items in ArrayList is 1/4 of its size

 //return removed item

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Retrieve and remove item from a specific index

37

 /**
 * Retrieves and removes the item at the specified index.
 *
 * @param index
 * the index of the item to be removed
 * @return the removed item
 * @pre 0<=index<size
 */
public Item remove(int index) {

 //check whether index in range
 if (index >= size || index < 0){

throw new IndexOutOfBoundsException("Index " + index + " out of bounds");
 }

 //retrieve Item at index
Item item = data[index];

 //reduce number of items by 1
size--;

 //shift all items from index till the end one position to the left
for (int i = index; i < size; i++){

data[i] = data[i + 1];
 }
 //set the last item (since they have been shifted to the left), to null

data[size] = null; // Avoid loitering (see text).

 //shrink in half to save space if number of items in ArrayList is 1/4 of its size
if (size > 0 && size == data.length / 4){

resize(data.length / 2);
 }
 //return removed item

return item;
}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

PRACTICE TIME: Clear all elements

38

/**
 * Clears the ArrayList of all elements.
 */
public void clear() {

// Go through all elements of the array and set them to null

// Set number of items to 0

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ARRAYLIST

Clear all elements

39

/**
 * Clears the ArrayList of all elements.
 */
public void clear() {

// Go through all elements of the array and set them to null
for (int i = 0; i < size; i++){

data[i] = null;
 }

// Set number of items to 0
size = 0;

}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Resizable Arrays

▸ Background

▸ ArrayList

▸ Java Collections

▸ Theory of Algorithms

▸ Running Time of ArrayList operations

40

JAVA COLLECTIONS

The Java Collections Framework

▸ Collection: an object that groups multiple elements into a
single unit, allowing us to store, retrieve, manipulate data.

▸ Collections Framework:

▸ Interfaces: ADTs (abstract data types) that represent
collections.

▸ Implementations: The actual data structures.

▸ Algorithms: methods that perform useful computations,
such as searching and sorting.

41

 https://docs.oracle.com/javase/tutorial/collections/intro/index.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/tutorial/collections/intro/index.html

JAVA COLLECTIONS

The Java Collections Framework

42

 https://en.wikipedia.org/wiki/Java_collections_framework

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework

JAVA COLLECTIONS

List ADT

43

 https://en.wikipedia.org/wiki/Java_collections_framework

▸ A collection storing elements in an ordered fashion.

▸ Elements are accessed in a zero-based fashion.

▸ Typically allow duplicate elements and null values but
always check the specifications of implementation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework

JAVA COLLECTIONS

ArrayList in Java Collections

44

 https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

▸ Resizable list that increases by 50% when full and does
NOT shrink.

▸ Not thread-safe (more in CS105).

java.util.ArrayList;

public class ArrayList<E> extends AbstractList<E>
implements List<E>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

JAVA COLLECTIONS

Vector in Java Collections

45

 https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

▸ Java has one more class for resizable arrays.

▸ Doubles when full.

▸ Is synchronized (more in CS105).

java.util.Vector;

public class Vector<E> extends AbstractList<E>
implements List<E>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/Vector.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Resizable Arrays

▸ Background

▸ ArrayList

▸ Java Collections

▸ Theory of Algorithms

▸ Running Time of ArrayList operations

46

THEORY OF ALGORITHMS

Type of analyses

▸ Best case: lower bound on cost.

▸ What the goal of all inputs should be.

▸ Often not realistic, only applies to “easiest” input.

▸ Worst case: upper bound on cost.

▸ Guarantee on all inputs.

▸ Calculated based on the “hardest” input.

▸ Average case: expected cost for random input.

▸ A way to predict performance.

▸ Not straightforward how we model random input.

THEORY OF ALGORITHMS

Asymptotic Notations

▸ Θ notation: bounds function from above and below.

▸ Average case

▸ Ο notation: bounds function from above.

▸ Worst case

▸ Ω notation: bounds function from below.

▸ Best case

THEORY OF ALGORITHMS

Big O - asymptotic upper bound

▸ For a given function , the
order of growth is ()
if there exist positive constants
and such that ,
for all }

f(n)
g(n) O(g(n))

c
n0 0 ≤ f(n) ≤ cg(n)

n > n0

THEORY OF ALGORITHMS

Asymptotic analysis simplifies analyzing worst-case performance

▸ We will be dropping constants. For example:

▸

▸

▸

▸ Yes, , but that’s a rather useless bound.

▸ Sorting them by increasing rate of growth:

▸

3n3 + 2n + 7 = O(n3)

2n + n2 = O(2n)

1000 = O(1)

3n3 + 2n + 7 = O(n6)

O(1), O(log n), O(n), O(n log n), O(n2), O(n3), O(2n), O(n!)

THEORY OF ALGORITHMS

How to interpret Big O

▸ or "order one”: running time does not change as size of the problem
changes, that is running time stays constant and independent of problem size.

▸ or "order log n”: running time increases as problem size grows. Whenever
problem size doubles, running time increases by a constant.

▸ or "order n”: time increases proportionally to the the rate of growth of the
size of the problem, that is in a linear rate. Double the problem size, you get
double running time.

▸ or "order n squared”: Double the problem size you get four times the
running time.

▸ or "order n cubic”: Double the problem size you get eight times the running
time.

O(1)

O(log n)

O(n)

O(n2)

O(n3)

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Resizable Arrays

▸ Background

▸ ArrayList

▸ Java Collections

▸ Theory of Algorithms

▸ Running Time of ArrayList operations

52

RUNNING TIME OF ARRAYLIST OPERATIONS

Worst-case performance of add() is O(n)

‣Cost model: 1 for insertion, for copying items to a new array.

‣Worst-case: If ArrayList is full, add() will need to call resize to
create a new array of double the size, copy all items, insert new one.

‣Total cost: .

‣Realistically, this won’t be happening often and worst-case analysis
can be too strict. We will use amortized time analysis instead.

n n

n + 1 = O(n)

53

RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis

‣Amortized cost per operation: for a sequence of operations, it is
the total cost of operations divided by .

‣Simplest form of amortized analysis called aggregate method.
More complicated methods exist, such as accounting (banking)
and potential (physicist’s).

n
n

54

RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis for add() operationsn

‣ As the ArrayList increases, doubling happens half as often but costs twice as much.

‣ total cost)= (“cost of insertions”) + (“cost of copying”)

‣ (“cost of insertions”) .

‣ (“cost of copying”) = .

‣ total cost) , therefore amortized cost is , but “lumpy”.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0
Copying
Cost 16

1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1
Total
Cost 17

O(∑ ∑
∑ = n

∑ 1 + 2 + 22 + . . .2⌊log2 n⌋ ≤ 2n

O(≤ 3n ≤
3n
n

= 3 = O(1)

55

RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis for add() operations when increasing ArrayList by 1.n

‣ (“cost of insertions”) .

‣ (“cost of copying”) = .

‣ total cost) , therefore amortized cost is or .

‣Same idea when increasing ArrayList size by a constant.

‣This is why in the lab on Friday, we saw that doubling was the fastest and linear(1) the
slowest

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Copying
Cost 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Total
Cost 17

∑ = n

∑ 1 + 2 + 3 + . . . + n − 1 = n(n − 1)/2
O(= n + n(n − 1)/2 = n(n + 1)/2 (n + 1)/2 O(n)

56

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Resizable Arrays

▸ Background

▸ ArrayList

▸ Java Collections

▸ Theory of Algorithms

▸ Running Time of ArrayList operations

57

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Oracle’s guides:

▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

▸ ArrayLists: https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

▸ Recommended Textbook:

▸ Chapter 1.3 (Page 136–137)

▸ Chapter 1.4 (pages 197–199)

▸ Recommended Textbook Website:

▸ Resizable arrays: https://algs4.cs.princeton.edu/13stacks/

▸ Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

58

Practice Problems:
▸ 1.4.1, 1.4.5 - 1.4.7, 1.4.32, 1.4.35-1.4.36.

Code
▸ Lecture 6 code

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://algs4.cs.princeton.edu/13stacks/
https://algs4.cs.princeton.edu/14analysis/
https://github.com/pomonacs622023fa/code/blob/main/Lecture6/ArrayList.java

